Charakterystyczne cechy techniki mikrofal

Technika mikrofal - zastosowania

łączność nawigacja

medycyna

anty-radiolokacja

gospodarstwo domowe

radiolokacja

radioastronomia

miernictwo

Widmo fal elektromagnetycznych

10 ⁻⁶ nm			
10 ⁻⁵ nm			
10 ⁻⁴ nm	promieniowanie		
10 ⁻³ nm	gamma		
10 ⁻² nm			
10 ⁻¹ nm			
1 nm	Roentgena		
10 nm	Roenigena		
100 nm	ultrafiolet		
1 µm	zakres widzialny		
10 µm	bliska podczerwień		
100 µm	daleka podczerwień		
1 mm	teraherce		
10 mm			
100 mm	mikrofale		
1 m			
10 m	fale radiowe		
100 m			
1 km			
10 km			

-400 ~700 nm

UHF

VHF

HF

MF

LF

100 PHz

10 PHz

1 PHz

100 THz

10 THz

1 THz

100 GHz

10 GHz

1 GHz

100 MHz

10 MHz

1 MHz

100 kHz

10 kHz

Gedanken Eksperiment

Jak płynie prąd w antenie?

Tempo animacji baaaardzo zwolnione

W obwodzie rozwartym może płynąć prąd!

W jaki sposób zwiększyć częstotliwość pracy generatora?

układ m.cz.

układ mikrofalowy

Podstawowe wielkości fizyczne i jednostki SI stosowane w technice mikrofal					
wielkość	oznaczenie	jednostka SI			
natężenie pola elektrycznego	E	V/m			
natężenie pola magnetycznego	Н	A/m			
indukcja elektryczna	D	C/m^2			
indukcja magnetyczna	В	Wb/m ²			
ładunek elektryczny	q	$C = A \cdot s$			
gęstość prądu	j	A/m ²			
gęstość ładunku	ρ	C/m ³			
strumień elektryczny	$arPsi_{ m e}$	С			
strumień magnetyczny	$arPsi_{ m m}$	$Wb = V \cdot s$			
przewodność	σ	A/V·m			
przenikalność elektryczna	ε	F/m			
przenikalność magnetyczna	μ	H/m			

fale decymetrowe	1 - 10 dm	0,3 – 3 GHz
fale centymetrowe	1 - 10 cm	3 – 30 GHz
fale milimetrowe	1 - 10 mm	30 – 300 GHz
fale submilimetrowe	< 1 mm	> 300 GHz
	fale decymetrowe fale centymetrowe fale milimetrowe fale submilimetrowe	fale decymetrowe1 - 10 dmfale centymetrowe1 - 10 cmfale milimetrowe1 - 10 mmfale submilimetrowe< 1 mm

oznaczenie tradycyjne	zakres częstotliwości [GHz]	długości fal [cm]	oznaczenie nowe
VHF	0,1 - 0,3	300 - 100	А
UHF	0,3 - 0,5 0,5 - 1,0	100 - 60 60 - 30	B C
L	1 - 2	30 - 15	D
S	2 - 3 3 - 4	15 - 10 10 - 7,5	E F
С	4 - 6 6 - 8	7,5 - 5 5 - 3,75	G H
Х	8 - 10 10 - 12	3,75 - 3 3 - 2,5	I J
Ku	12 - 18	2,5 - 1,67	J
Κ	18 - 26,5	1,67 - 1,1	J (do 20 GHz)
Ka	26,5 - 40	1,1 - 0,75	K
fale milimetrowe	40 - 100	0,75 - 0,3	L (do 60 GHz) M (pow. 60 GHz)

Metody opisu obwodów mikrofalowych

Podstawowe pojęcia i prawa elektromagnetyzmu

Jednoznaczne przypisanie każdemu punktowi przestrzeni określonej wielkości fizycznej definiuje pole tej wielkości

Pola

© Kashiwa Lab.

- skalarne
- wektorowe
- tensorowe

Pole elektryczne – pole wektorowe określające w każdym punkcie siłę działającą na jednostkowy, spoczywający ładunek elektryczny.

Linie sił pola to linie, do których wektory sił są styczne w każdym punkcie przestrzeni

Pola elektryczne generują ładunki elektryczne oraz zmienne pola magnetyczne.

Dwie metody definiowania pola

Za pomocą funkcji analitycznej – wtedy można obliczyć wartość pola w dowolnym punkcie

$$\mathbf{E}(\mathbf{x}, \mathbf{z}, \mathbf{t}) = \begin{bmatrix} \operatorname{Re} \left[\frac{1}{4} \cdot \mathbf{x} \cdot \mathbf{z} \cdot \eta_0 \cdot \mathbf{I} \cdot d \cdot \exp\left(-\mathbf{j} \cdot \mathbf{k} \cdot \sqrt{\mathbf{x}^2 + \mathbf{z}^2}\right) \cdot \frac{\left(3 \cdot \mathbf{k} \cdot \sqrt{\mathbf{x}^2 + \mathbf{z}^2} - 3 \cdot \mathbf{j} + \mathbf{j} \cdot \mathbf{k}^2 \cdot \mathbf{x}^2 + \mathbf{j} \cdot \mathbf{k}^2 \cdot \mathbf{z}^2\right)}{\left[\left(\mathbf{x}^2 + \mathbf{z}^2\right)^{0} \cdot (\mathbf{k} \cdot \mathbf{\pi}) \right]} \cdot e^{\mathbf{j} \cdot (\omega \cdot \mathbf{t})} \end{bmatrix} \\ \mathbf{E}(\mathbf{x}, \mathbf{z}, \mathbf{t}) = \begin{bmatrix} \operatorname{Re} \left[\frac{-1}{4} \cdot \eta_0 \cdot \mathbf{I} \cdot d \cdot \exp\left(-\mathbf{j} \cdot \mathbf{k} \cdot \sqrt{\mathbf{x}^2 + \mathbf{z}^2}\right) \cdot \frac{\left[\left(-2 \cdot \mathbf{z}^2 \cdot \mathbf{k} \cdot \sqrt{\mathbf{x}^2 + \mathbf{z}^2} + 2 \cdot \mathbf{j} \cdot \mathbf{z}^2 + \mathbf{j} \cdot \mathbf{k}^2 \cdot \mathbf{x}^4 + \mathbf{j} \cdot \mathbf{k}^2 \cdot \mathbf{x}^2 \cdot \mathbf{z}^2 + \mathbf{k} \cdot \sqrt{\mathbf{x}^2 + \mathbf{z}^2 \cdot \mathbf{x}^2} - \mathbf{j} \cdot \mathbf{x}^2 \right]}{\left[\left(\mathbf{x}^2 + \mathbf{z}^2\right)^{0} \cdot (\mathbf{k} \cdot \mathbf{\pi}) \right]} \end{bmatrix} \end{bmatrix}$$

Numerycznie – wtedy pole jest zdefiniowane tylko w wybranych punktach

PoleHamiltona(f, x1, x2, m, y1, y2, n) :=
$$\begin{vmatrix} dx \leftarrow \frac{x2 - x1}{m} \\ dy \leftarrow \frac{y2 - y1}{n} \\ for \ i \in 0..m \\ for \ j \in 0..n \\ tx \leftarrow x1 + i \cdot dx \\ ty \leftarrow y1 + j \cdot dy \\ M_{i,j} \leftarrow \frac{d}{dty} f(tx, ty) - i \cdot \frac{d}{dtx} f(tx, ty) \\ PoleHamiltona(f, -10, 10, 20, -10, 10, 20) \end{vmatrix}$$

Pola statyczne – ładunki, magnesy i pętle z prądem są nieruchome - wektory E i H niezależne.

Pola dynamiczne - ładunki, magnesy i pętle z prądem są ruchome - wektory E i H sprzężone.

Pole elektromagnetyczne opisują równania Maxwella

w układzie SI	w układzie CGS	$\uparrow \frac{\partial D}{\partial t}$
$\nabla \times \boldsymbol{H} = \boldsymbol{j} + \frac{\partial \boldsymbol{D}}{\partial t}$	$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}$	
$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$	$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$	
$\nabla \boldsymbol{D} = \boldsymbol{\rho}$	$\nabla \boldsymbol{D} = \boldsymbol{\rho}$	H
$\nabla \boldsymbol{B} = 0$	$\nabla \boldsymbol{B} = 0$	↑ <u>∂B</u>
gdzie:	gdzie:	∂t
$\boldsymbol{D} = \varepsilon \varepsilon_0 \boldsymbol{E}$	$D = \varepsilon E$	
$\boldsymbol{B} = \mu \mu_0 \boldsymbol{H}$	$B = \mu H$	
$j = \sigma E$	$j = \sigma E$	E

Prawo zachowania ładunku

$$\nabla j = -\frac{\partial \rho}{\partial t}$$

W ośrodkach bez prądów przewodzenia (σ = 0) oraz bez ładunków (ρ = 0) (próżnia) równania Maxwella upraszczają się do postaci:

$$\nabla \times H = \frac{\partial D}{\partial t}$$
$$\nabla \times E = -\frac{\partial B}{\partial t}$$
$$\nabla D = 0$$
$$\nabla B = 0$$

Klasyfikacja ośrodków

próżnia $\varepsilon = \mu = 1, \sigma = 0$

ośrodki materialne $\epsilon > 1$, $\mu \geq 1, \, 0 \leq \sigma \leq \infty$

Jednorodne równanie falowe

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} = \varepsilon \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \quad (1)$$
$$\nabla \times \boldsymbol{E} = \frac{\partial \boldsymbol{B}}{\partial t} = \mu \mu_0 \frac{\partial \boldsymbol{H}}{\partial t} \quad (2)$$

$$\nabla \times (1) = \nabla \times (\nabla \times \boldsymbol{H}) = \varepsilon \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times \boldsymbol{E}) =$$
$$= \varepsilon \varepsilon_0 \frac{\partial}{\partial t} \left(-\mu \mu_0 \frac{\partial \boldsymbol{H}}{\partial t} \right) = -\varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \boldsymbol{H}}{\partial t^2}$$

Na mocy tożsamości: $\nabla \times (\nabla \times \boldsymbol{H}) \equiv \nabla (\nabla \boldsymbol{H}) - \nabla^2 \boldsymbol{H}$

oraz z 4-ego równania Maxwela $\nabla H = 0$

otrzymuje się
$$\nabla^2 \boldsymbol{H} = \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \boldsymbol{H}}{\partial t^2}$$

albo

$$\nabla^2 \boldsymbol{H} - \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \boldsymbol{H}}{\partial t^2} = 0$$

oznaczając operator

$$\nabla^2 - \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2}{\partial t^2} = \Box$$

otrzymujemy jednorodne równanie falowe (d'Alamberta

 $\Box H = 0$

rozwiązaniem są funkcje opisujące fale

np. dla oscylującego dipola elementarnego

$$\mathbf{E} = \begin{bmatrix} \frac{1}{4} \exp_{0} \operatorname{Id} \exp(\frac{1}{2} \mathbf{k} \sqrt{k^{2} + y^{2} + z^{2}}) \frac{3k\sqrt{k^{2} + y^{2} + z^{2}} - 3j + jk^{2}x^{2} + jk^{2}y^{2} + jk^{2}x^{2}}{(k + y^{2} + z^{2})^{2} (k + x)} \\ \frac{1}{4} \exp_{0} \operatorname{Id} \exp(\frac{1}{2} \mathbf{k} \sqrt{k^{2} + y^{2} + z^{2}}) \frac{3k\sqrt{k^{2} + y^{2} + z^{2}} - 3j + jk^{2}x^{2} + jk^{2}y^{2} + jk^{2}y^{2}}{(k + y^{2} + z^{2})^{2} (k + x)} \\ \frac{1}{4} \exp(\frac{1}{2} \mathbf{k} \sqrt{k^{2} + y^{2} + z^{2}}) \frac{-2z^{2} k\sqrt{k^{2} + y^{2} + z^{2}} + 2jk^{2}x^{4} + 2jk^{2}x^{2}y^{2} + jk^{2}x^{2}z^{2} + jk^{2}y^{4} + jk^{2}y^{2}z^{2} + k\sqrt{k^{2} + y^{2} + z^{2}}y^{2} - jx^{2} - jy^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} + jx^{2}y^{2} + jx^{2}y^{2} + jx^{2}y^{2} + jx^{2}y^{2} + jx^{2}y^{2} + jx^{2}y^{2} - jx^{2} - jy^{2}z^{2} - jx^{2}z^{2} - jy^{2}z^{2} - jx^{2}z^{2} - jy^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jy^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jx^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jx^{2}z^{2} - jx^{2} - jx^{2}z^{2} - jx^{2} - jx^{2}$$

Właściwości rozwiązań równań Maxwella

Fale elektromagnetyczne nie wymagają do propagacji ośrodka sprężystego

Wektory E i H drgają w fazie i spełniają relację

$$E\sqrt{\varepsilon\varepsilon_0} = H\sqrt{\mu\mu_0}$$

Wektory E i H leżą w płaszczyźnie prostopadłej do kierunku propagacji fali

Wektory E, H oraz v są do siebie wzajemnie prostopadłe i tworzą w próżni prawoskrętny układ prostokątny (fala poprzeczna)

Prędkość rozchodzenia się (propagacji) fale elektromagnetycznych wynosi:

$$\mathbf{v} = \frac{C}{\sqrt{\varepsilon \varepsilon_0 \mu \mu_0}} = \frac{C}{\sqrt{\varepsilon_r \mu_r}}$$

Prędkość rozchodzenia się (propagacji) fale elektromagnetycznych w próżni wynosi:

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3 \cdot 10^8 \left[\frac{m}{s}\right]$$

Gęstość energii pola elektromagnetycznego w ośrodku izotropowym:

$$W = \frac{\varepsilon\varepsilon_0 E^2}{2} + \frac{\mu\mu_0 H^2}{2}$$

Wektor gęstości strumienia energii fali elektromagnetycznej (wektor Poyntinga)

$$\boldsymbol{P} = \boldsymbol{E} \times \boldsymbol{H}$$

Impedancja falowa (falowe prawo Ohma)

$$Z_f = \frac{|\boldsymbol{E}|}{|\boldsymbol{H}|}$$

dla próżni

$$Z_f = 120\pi \approx 377 [\Omega]$$

Transformacyjne właściwości linii transmisyjnych

Linia długa - definicje

Linia długa jest pewną ograniczoną objętością, w której przenoszona jest energia fal

albo

Nieskończenie długa linia przesyłowa będąca idealnym odbiornikiem dostarczanej do niej energii

W praktyce linia taka ma długość skończoną ale zakończona jest idealnym odbiornikiem energii

Schemat zastępczy:

$\Delta u(l) = (R + j\omega L)\Delta l \cdot i(l)$ $\Delta i(l) = (G + j\omega C)\Delta l \cdot u(l)$

 $Z_0 = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}} \qquad \gamma = \sqrt{(R + j\omega L) \cdot (G + j\omega C)}$

 $c = \frac{1}{\gamma}$ $\gamma = \alpha + j\beta$ $\beta = \frac{2\pi}{\lambda} = \frac{\omega}{c}$

Dla linii bezstratnej $R = G = 0 \implies \alpha = 0$

 $\Delta u(l) = (R + j\omega L)\Delta l \cdot i(l)$ $\Delta i(l) = (G + j\omega C)\Delta l \cdot u(l)$

Dla przyrostów infinitezymalnych

$$\frac{du(l)}{dl} = (R + j\omega L) \cdot i(l) \qquad \checkmark \frac{\frac{d}{dl}}{\frac{di(l)}{dl}} = (G + j\omega C) \cdot u(l) \qquad \checkmark \frac{\frac{d}{dl}}{\frac{d}{dl}}$$

Równania telegrafistów

$$\frac{d^2 u(l)}{dl^2} = (R + j\omega L)(G + j\omega C) \cdot u(l) = \gamma^2 \cdot u(l)$$
$$\frac{d^2 i(l)}{dl^2} = (R + j\omega L)(G + j\omega C) \cdot i(l) = \gamma^2 \cdot i(l)$$

Rozwiązanie

dla w. b.

$$u(l)|_{l=0} = U_K, \quad i(l)|_{l=0} = I_K, \quad Z_K = \frac{U_K}{I_K}$$

$$u(l) = U_K \cosh \gamma l + I_K Z_0 \sinh \gamma l$$
$$i(l) = I_K \cosh \gamma l + \frac{U_K}{Z_0} \sinh \gamma l$$

$$\sinh x = -i\sin ix = \frac{e^x - e^{-x}}{2} \quad ; \quad \cosh x = \cos ix = \frac{e^x + e^{-x}}{2}$$

Impedancja wejściowa zależy od odległości od obciążenia!

 $Z_{we}(l) = \frac{u(l)}{i(l)} = Z_0 \frac{Z_K + Z_0 tgh\gamma l}{Z_0 + Z_K tgh\gamma l}$

Dla linii bezstratnej

$Z_{we}(l) = Z_0 \frac{Z_K + jZ_0 tg \beta l}{Z_0 + jZ_K tg \beta l}$

Miary dopasowania

$$Z_{G} \qquad Z_{G} \qquad Z_{K} \qquad Z_{G} = Z_{0}$$

współczynnik odbicia

$$\Gamma = \frac{u_{odb}}{u_{pad}} = -\frac{\dot{i}_{odb}}{\dot{i}_{pad}} = \frac{Z_K - Z_0}{Z_K + Z_0} \qquad \Gamma = \left|\Gamma\right| e^{-i\theta} \qquad \Gamma \in \left\langle-1;1\right\rangle$$

współczynnik fali stojącej (ang. SWR)

$$WFS = \frac{u_{\text{max}}}{u_{\text{min}}} = \frac{|u_{pad}| + |u_{odb}|}{|u_{pad}| - |u_{odb}|} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Związek pomiędzy modułem współczynnika odbicia a WFS

$$\left|\Gamma\right| = \frac{WFS - 1}{WFS + 1}$$

 $WFS \in (0;\infty)$

Dla linii rozwartej na końcu

$z_{K} = \infty, \ z_{WE} = -jz_{0}ctg\beta l, \ \Gamma = 1, WFS = \infty$

Dla linii obciążonej reaktancją pojemnościową

Dla linii obciążonej reaktancją indukcyjną

$$Z_{K} = jX_{KL} = -j\omega L, Z_{WE} = jz_{0} \frac{X_{KL} + z_{0}tg\beta l}{z_{0} - X_{KL}tg\beta}, \ \Gamma = -1, WFS = \infty$$

Dla linii obciążonej rezystancją $0 < Z_K = R_K < \infty, \ Z_{WE} \in \text{Im}, \ U_{ODB} < U_{PAD}$

dwa przypadki

 $Z_0 < R_K < \infty, -1 < \Gamma < 0, 1 < WFS < \infty$

Przykłady linii

$$Z_0 = \frac{120}{\sqrt{\varepsilon_r}} \ln\left(\frac{2H}{d} + \sqrt{\left(\frac{2H}{d}\right)^2 - 1}\right)$$

Linia koncentryczna

 $Z_0 = \frac{138}{\sqrt{\varepsilon_r}} \log\left(\frac{b}{d}\right)$

Symetryczna linia paskowa

 $Z_{0} = 337 \frac{b}{w} \left\{ \sqrt{\varepsilon_{r}} w \left[1 + 1,735 \varepsilon_{r}^{-0,0724} \left(\frac{w}{b} \right)^{-0,386} \right] \right\}^{-1}$

Niesymetryczna linia paskowa

Wykorzystuje się trzy standardy: 30, 50 i 75 Ω

Standard 50 Ω jest powszechny w sprzęcie pomiarowym – to kompromis pomiędzy minimum tłumienia a zdolnością przenoszenia maksimum mocy.

Odwzorowanie homograficzne

Funkcję homograficzną wiążącą ze sobą dwie zmienne zespolone w i z zapisuje się następująco:

$$w = \frac{az+b}{cz+d}$$
; $z \neq -\frac{d}{c}$

przy czym a, b, c i d są stałymi zespolonymi.

Odwzorowaniem homograficznym nazywamy przyporządkowanie punktom na płaszczyźnie zespolonej Z punktów na płaszczyźnie zespolonej W, opisane funkcją homograficzną.

Własności odwzorowania homograficznego:

- odwzorowanie jest wzajemnie jednoznaczne
- okrąg na płaszczyźnie Z transformuje się na okrąg na płaszczyźnie W (prosta jest szczególnym przypadkiem okręgu)
- ✤ odwzorowanie zachowuje ortogonalność okręgów

Znana już zależność na wsp. odbicia to typowa funkcja homograficzna

$$\Gamma = \frac{Z_K - Z_0}{Z_K + Z_0} = \frac{\frac{Z_K}{Z_0} - 1}{\frac{Z_K}{Z_0} + 1} = \frac{z_{zn} - 1}{z_{zn} + 1}$$

Wykres Smitha powstaje przez przetransformowanie siatki prostych r = const. i x = const. z płaszczyzny impedancji Z na płaszczyznę współczynnika odbicia Γ .

Proste r = const na płaszczyźnie **Z** transformują się na płaszczyznę Γ jako okręgi o promieniach 1/(r+1) i środkach [r/(r+1), 0].

Proste x = const transformują się na okręgi o promieniach 1/|x| i środkach leżących w punktach o współrzędnych [1, 1/x].

Obie rodziny okręgów są względem siebie ortogonalne.

Jeżeli transformację ograniczyć do prawej półpłaszczyzny to otrzymuje się wykres Smitha.

Można też przetransformować z płaszczyzny admitancji **Y** proste g = const i b = const na odpowiednie okręgi na płaszczyźnie **G** - otrzymuje się wtedy identyczną, siatkę współrzędnych, ale obróconą o 180°.

Punkty prawej półpłaszczyzny **Z** transformują się do wnętrza okręgu o promieniu 1, punkty lewej półpłaszczyzny transformują się do zewnętrza okręgu.

Przy graficznej prezentacji parametrów obwodów generacyjnych korzysta się z poszerzonego wykresu Smitha, zawierającego także siatkę współrzędnych poza okręgiem jednostkowym.

Po nałożeniu okręgów powstaje gotowy wykres Smitha

Po obróceniu o 180° okręgi stałych rezystancji i reaktancji przechodzą odpowiednio w okręgi stałych konduktancji i susceptancji.

Spotyka się wykresy z nałożonymi na siebie wszystkimi rodzajami okręgów.

Wykres Smitha w postaci użytecznej praktycznie jest często wzbogacony o różne podziałki

Wykres Smitha jest popularnym sposobem reprezentacji danych pomiarowych

Mikrofalowe linie przesyłowe

Przykłady linii transmisyjnych

Falowody

Rozważmy zwykła falę płaską propagującą się pod kątem θ do osi z i odbijającą się od każdej napotkanej powierzchni przewodzącej

W kierunkach poprzecznych do kierunku propagacji (x i y) fale wielokrotnie odbite od płaszczyzn ograniczających interferują ze sobą tworząc fale stojące o długościach:

$$\lambda_x = \frac{2a}{m}$$
 $\lambda_y = \frac{2b}{n}$ $\lambda_z = ?$

i liczbach falowych (stałych propagacji)

$$\beta_x = \frac{2\pi}{\lambda_x} = \frac{\pi m}{a}$$
 $\beta_y = \frac{2\pi}{\lambda_y} = \frac{\pi n}{b}$ $\beta_z = \beta$

gdzie m, n = 1, 2, 3, ... a, b odległości pomiędzy płaszczyznami ograniczającymi

Wektor falowy:

$$\vec{\beta} = \frac{\pi m}{a} i_x + \frac{\pi n}{b} i_y + \beta i_z$$

Pulsacja wyniesie:

$$\omega = c \left| \vec{\beta} \right| = c \sqrt{\beta^2 + \pi^2 \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]} = \sqrt{(c\beta)^2 + \omega_{mn}^2} = \sqrt{(c\beta)^2 + \lambda_c^2}$$

Tylko niektóre kąty θ umożliwiają powstawanie fal stojących

$$\cos\theta = \frac{\beta}{\left|\vec{\beta}\right|} = \sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2} = \sqrt{1 - \left(\frac{\lambda_c}{\lambda}\right)^2}$$

Fala płaska rozchodzi się z prędkością c, ale ponieważ porusza się pod kątem θ do osi z więc wypadkowa prędkość wzdłuż falowodu wynosi:

$$v_g = c \cos \theta = c \sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2} = c \sqrt{1 - \left(\frac{\lambda_c}{\lambda}\right)^2}$$

Z drugiej zaś strony prędkość czoła fali (prędkość fazowa) wynosi:

 $\frac{c}{\cos\theta} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}}$ v $\left(\frac{2\pi}{\lambda}\right)^2 = \left(\frac{2\pi}{\lambda_c}\right)^2 + \left(\frac{2\pi}{\lambda_a}\right)^2$ prędkość faz.owo C prędkość grupo 4 długość wolna długość krytyczna w falowodzie przestrzeń λ/λ_{c}

Propagacja podstawowego rodzaju fali w falowodzie prostokątnym Dwie płaskie fale propagujące się ukośnie wewnątrz falowodu

$$E_{y} = \frac{-\omega\mu a}{2\pi} A\left(e^{jk_{c}x} - e^{-jk_{c}x}\right)e^{-j\beta z}$$

fronty fazowe fal

propagującej się w kierunku A

propagującej się w kierunku B

 $\frac{1}{\sin\frac{k_c}{k}} = \frac{1}{\sin\frac{\lambda}{\lambda_c}}$ $f \uparrow \Rightarrow \theta \downarrow$ $f = f_c \implies \theta = 90^\circ$

Mody w falowodzie

 $\gamma = \sqrt{(R_1 + j\omega L_1)(G_1 + j\omega C_1)} = \alpha + j\beta, \ \beta = \frac{2\pi}{\lambda}$

Przy założeniu bezstratności tj. przyjmując $\alpha=0$

$$\nabla^2 E_z + \beta^2 E_z = 0$$

Rozwiązanie można uzyskać metodą rozdzielenia zmiennych

 $E_z = XYZ$

wtedy

$$\frac{X''}{X} + \frac{Y''}{Y} + \frac{Z''}{Z} + \beta^2 = 0$$

równanie rozpada się na trzy równania zawierające po jednej zmiennej

$$X'' - \gamma_x^2 X = 0$$

$$Y'' - \gamma_y^2 Y = 0$$

$$Z'' - \gamma_z^2 Z = 0$$

każde z nich można rozwiązać oddzielnie

Szukamy rozwiązania w postaci superpozycji fal

$$X = Ae^{\gamma_x x} + Be^{-\gamma_x x}$$

Warunki brzegowe opisują zanik pola na ściankach falowodu $X=E_{z}(x)=0$ dla x=0 oraz dla x=a

Dla falowodu bezstratnego

$$X = Ae^{j\beta_x x} + Be^{-j\beta_x x}$$

Z wzorów Eulera $e^{jz} = \cos z + i \sin z, e^{-jz} = \cos z - i \sin z$

$$X = C\sin\beta_x x + D\cos\beta_x x$$

z 1. w.b. wynika, że C = 0, zatem

$$X = D\cos\beta_x x$$

2. w.b. będzie spełniony dla $\beta_x a = m\pi$

zatem

$$\beta_x = m \frac{\pi}{a}$$

analogicznie

$$\beta_y = n \frac{\pi}{b}$$

Wartości β_x i β_y umożliwiają wyznaczenie rozkładu składowej E_z w płaszczyźnie \perp do osi z

$$\left[E_{z}(x, y)\right]_{m, n} = \cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$$

wskaźniki m i n określają rodzaj fali (mod) typu $E ozn. TE_{mn}$

Analogiczne ozważania dla składowej pola magnetycznego prowadzą do rozkładu:

$$[H_z(x, y)]_{m,n} = \sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$

w którym wskaźniki m i n określają rodzaj fali (mod) typu Hozn. TM_{mn}

Długość fali krytycznej - największa długość fali, dla której nie jest ona tłumiona długość ta wynosi:

$$A_C = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}$$

Podstawowym rodzajem fali jest taki rodzaj, dla którego $\lambda_C = \max$

Dla pola *E* jest to TE_{10} i wtedy $\lambda_c = 2a$ i nie zależy od *b*.

Aby nie dopuścić do pojawienia się w falowodzie innych rodzajów fal należy dobrać wymiar b. Zakładając możliwość pojawienia się sąsiednich dla TE_{10} rodzajów fal czyli TE_{01} i TE_{20} uzyskuje się

$$\left(\frac{\pi}{b}\right)^2 = \left(\frac{2\pi}{a}\right)^2$$

stąd a = 2b

Jest to pewne uproszczenie. Przy założeniu sąsiadowania innych modów Współczynnik może być różny od 2; np. w falowodzie WR 284 a = 2,12b.

Długości krytycznej fali odpowiada częstotliwość odcięcia – najniższa wartość częstotliwości fali w falowodzie

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Np. dla falowodu WR284; a = 2,84 mils = 72,196 mm; b = 1,34 mils = 34,036 mm

$$f_c^{TM10} = \frac{c}{2a} = \frac{3 \cdot 10^8}{2 \cdot 72,196 \cdot 10^{-3}} = 2,08 \cdot 10^9 = 2,08 \,\mathrm{GHz}$$

$$f_c^{TM\,01} = \frac{c}{2b} = 4,41 \text{GHz}$$

 $f_c^{TM11} = 4,87 \,\text{GHz}$ (wzór się nie upraszcza)

Wartości częstotliwości odcięcia dla modów TM liczy się tak samo.

Impedancje falowe falowodów oblicza się z zależności

$$Z_{nm}^{TE} = \frac{Z_{f0}}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} \qquad \qquad Z_{nm}^{TM} = Z_{f0}\sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

Np. dla WR284

$$Z_{10}^{TE}\Big|_{10\text{GHz}} = \frac{120\pi}{\sqrt{1 - \left(\frac{2,08 \cdot 10^9}{10 \cdot 10^9}\right)^2}} = 385, 4\Omega \qquad Z_{11}^{TM}\Big|_{10\text{GHz}} = 329, 3\ \Omega$$

Akość grupowa liczona jest z zależności:
$$v_f = \frac{c}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} \qquad v_g = c\sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

Prędkość grupowa liczona jest z zależności:

$$v_f v_g = c^2$$

$$v_f^{TE10}\Big|_{10 \text{ GHz}} = \frac{3 \cdot 10^8}{\sqrt{1 - \left(\frac{2,08}{10}\right)^2}} = 3,067 \cdot 10^8$$

$$v_g^{TE10}\Big|_{10 \text{ GHz}} = 2,934 \cdot 10^8$$

Falowód R-100 (WR-90) 0,9"×0,45"

dla 50 GHz θ =7,5°

dla 10 GHz θ =41°

dla 6,56 GHz θ=90°

symulacja

Falowody cylindryczne

Przyjmuje się cylindryczny układ współrzędnych

$$x = r\cos\theta$$
, $y = r\sin\theta$, $r = \sqrt{x^2 + y^2}$, $\theta = \arctan\frac{y}{x}$

W tym układzie równanie falowe przyjmie postać

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 E}{\partial \theta^2} + \chi_e E = 0$$

gdzie χ_e jest stałą charakteryzującą pole

Rozdzielając zmienne $E = f(r)g(\theta)$ i mnożąc przez

 $\frac{r^2}{f(r)g(\theta)}$

otrzymujemy układ równań ze względu nafi g

$$r^{2}f''(r) + rf'(r) + \chi_{e}r^{2}f(r) = n^{2}f(r)$$

$$g''(\theta) + n^2 g(\theta) = 0$$

Równania te można sprowadzić do równań Bessela za pomocą funkcji $z(r\sqrt{\chi_e}) = f(r)$

Wtedy pierwsze z nich przyjmie postać:

$$r^{2}\chi_{e}z''\left(r\sqrt{\chi_{e}}\right)+r\sqrt{\chi_{e}}z'\left(r\sqrt{\chi_{e}}\right)+\left(\chi_{e}r-n^{2}\right)z\left(r\sqrt{\chi_{e}}\right)=0$$

Zagadnienie tego typu rozwiązują funkcje Bessela.

Dla $n \in C$

$$z = C_1 I_n \left(r \sqrt{\chi_e} \right) + C_2 Y_n \left(r \sqrt{\chi_e} \right)$$

 I_n - funkcja Bessela I-ego rodzaju n-ego rzędu Y_n - funkcja Bessela II-ego rodzaju n-ego rzędu

Z własności funkcji Bessela

$$\lim_{r\to 0} Y_n\left(r\sqrt{\chi_e}\right) \to \infty$$

można przyjąć

$$z\left(r\sqrt{\chi_e}\right) = I_n\left(r\sqrt{\chi_e}\right)$$

wobec czegorozwiązanie równania falowego ma postać:

 $E(r,\theta) = I_n(r\sqrt{\chi_e})\cos n\theta$

i spełnia w.b.

$$I_n\left(R\sqrt{\chi_e}\right)=0$$

Pierwiastki funkcji Bessela (lub jej pochodnych) ozn. α_{mne} oraz α_{mnh} *n* - rząd funkcji Bessela *m* - miejsca zerowego funkcji Bessela

Wartościom m i n odpowiadają różne rodzaje pola

Rodzaje podstawowe α_{01e} =2,4 oraz α_{11h} =1,84

Ogólnie
$$R\sqrt{\chi} = \alpha_{mn} \rightarrow \chi = \frac{\alpha_{mn}^2}{R^2}$$

Krytyczna długość fali dla falowodu cylindrycznego wynosi:

$$\lambda_c = \frac{2\pi}{\sqrt{\chi}} = \frac{2\pi R}{\alpha_{mn}}$$

dla TM
$$\lambda_{Ce} = \frac{2\pi R}{2,4} = 2,61R$$

dla TE
$$\lambda_{Ch} = \frac{2\pi R}{1,84} = 3,41R$$

Inne typy falowodów

Pole E₀₁ w falowodzie Goubau

Pole HE₁₁ w falowodzie dielektrycznym Metody i układy dopasowania impedancji

Dopasowanie jest zawsze konieczne - najprostszy przykład

z czego wynika
$$R_{_W}=R_{_V}$$

$$\frac{dP_{R_L}}{dR_L} = 0$$

$$I^2 R_L = \frac{UIR_L}{R_W + R_L} = P_{R_L}$$

Identycznie jest w obwodach prądu zmiennego pod warunkiem, że wszystkie reaktancje zostaną skompensowane. Warunek dopasowania ma zatem postać:

 $R_W + j \sum X_C = R_L - j \sum X_L$

lub krócej

 $Z_{\dot{Z}R} = Z_L^*$

albo po prostu, jak dla prądu stałego $R_{_W}=R_{_I}$

Kompensację reaktancji dla określonej częstotliwości uzyskuje się przez odpowiednie dołączenie reaktancji o charakterze przeciwnym. kompensacja jest możliwa tylko dla określonej częstotliwości

Trudniej jest wyrównać rezystancje (jeśli są różne).

Często zdarza się, że $\text{Re}(Z_{\text{źR}}) \neq \text{Re}(Z_L)$

Na dostatecznie wysokich częstotliwościach ($2\pi I/\lambda >> 0$) można wykorzystać własności transformacyjne linii długich

Przykłady dla czterech typów obciążeń

XC :=
$$30 - j \cdot 70$$
Rm := 10

XL := $30 + j \cdot 70$
Rd := 200

1

Jeśli linia wnosi straty

1

Można do tego zastosować wykres Smitha

500 MHz Z_0 = 50 Ω 0,207 λ = 124 mm 10 pF

1 (25.2 - j50.1)Ohm 2 (14.4 + j22.7)Ohm 3 (50.0)+ j0.0)Ohm

Realizacja X_{KOMP} na wysokich częstotliwościach może być bardzo trudna

Linia zwarta i rozwarta na końcu

Jeśli źródło jest zespolone stosuje się stroiki

Stroik może też spełniać rolę filtru!

Jeśli źródło jest rzeczywiste stosuje się tzw. transformatory ćwierćfalowe

 $\lambda/4$ $R_{\acute{Z}R}$ Z_L

Transformator ćwierćfalowy – z bliska

 $Z_{01} = Z_T \frac{Z_{02} + jZ_T tg \beta l}{Z_T + jZ_{02} tg \beta l}$ $/: \tau \rightarrow \infty$

 $Z_{01} = Z_T \frac{\frac{Z_{02}}{\tau} + jZ_T \frac{tg \beta l}{\tau}}{\frac{z}{\tau} + jZ_{02} \frac{tg \beta l}{\tau}}$

 $tg \beta l \to \infty$ $\beta l = \frac{\pi}{2}$ $\beta = \frac{2\pi}{\lambda}$ $l = \frac{\lambda}{4}$

 $Z_{01} = Z_T \frac{jZ_T}{jZ_{02}} = \frac{Z_T^2}{Z_{02}}$

 $Z_T = \sqrt{Z_{01} Z_{02}}$

 $\Gamma_{we} = \frac{Z_{02} - Z_{01}}{Z_{02} + Z_{01} + j2\sqrt{Z_{01}Z_{02}} \cdot tg\,\beta l}$

Ş

