

Tematyka wykładów

Informacje wstępne Technologia urządzeń akustoelektronicznych Piezotransformatory Piezoaktywatory Samozasilająca się elektronika Specjalne zastosowania dźwięku Zaawansowane modele przetworników międzypalczastych Podstawy projektowania filtrów z falą powierzchniową Podstawy projektowania rezonatorów z falą powierzchniową Współpraca urządzeń akustoelektronicznych z zewnętrznymi układami elektronicznymi

Tematyka ćwiczeń rachunkowych

Obliczanie geometrii przetworników fal akustycznych Projektowanie rezonatorów akustycznych Projektowanie filtrów akustycznych Projektowanie układów dopasowania urządzeń akustycznych

Tematyka ćwiczeń laboratoryjnych

Pomiar parametrów rezonatorów akustoelektronicznych Badanie układów dopasowania urządzeń akustycznych

V. Soluch (red.)	Wstęp do piezoelektroniki 1980
W. Soluch (red.)	Filtry piezoelektryczne 1982
A. Śliwiński	Ultradźwięki i ich zastosowania 2001
Z. Jagodziński	Przetworniki ultradźwiękowe 1997
A. Kawalec, M. Pasternak	Podstawy Akustoelektroniki e-skrypt
A. A. Oliner	Acoustic surface waves 1978
H. Matthews	Surface wave filters, design, construction and use 1977
W. P. Mason	Physical Acoustic. Pciples and methods 1970
G. Kino	Acoustic Waves : Devised Imaging & Analog Signal 1987
J. KINO	Acoustic waves : Devised imaging & Analog Signal 198

	Wafers for	Surface Acoustic V	Vave (SAW) Device
4" LiNbO ₃ (LN) Wa	ifers		
Commodity	Czochralski (*CZ*)	grown Lithium Niobate (single	crystal, congruent)
Orientation	64° rotated Y-cut ± 0.25°	127.86° rot. Y-cut ± 0.25°	Y-cut ± 0.25°
Diameter	100.0mm ± 0.5mm	100.0mm ± 0.5mm	100.0mm ± 0.5mm
Orientation Flat	32mm ± 2mm perpendicular to X ± 0.25°	32mm ± 2mm perpendicular to X ± 0.25°	32mm ± 2mm perpendicular to Z ± 0.25°
Thickness	350μm ± 30μm 500μm ± 30μm	350μm ± 30μm 500μm ± 30μm	350 µm ± 30 µm 500 µm ± 30 µm
Propagating Surface	*+* - side, Ra ≤ 7 Å	*+* - side, Ra ≤ 7 Å	"+" - side, Ra ≤7 Å
Wafer Backside	GC#1000 lapped & etched 0.2µm ≤ Ra ≤ 0.5µm	GC#1000 lapped & etched 0.2µm ≤ Ra ≤ 0.5µm	GC#1000 lapped & etched 0.2µm ≤ Ra ≤ 0.5µm
TTV		≤12µm	
LTV	≤ 1.5	um within an area of 5mm x	5mm
PLTV	2 5	35% (3mm from edge exclude	od)
Bow		-30µm ≤ bow ≤ +30µm	
Warp		≤60µm	
Curie Temperature		1142°C ± 2°C	

Najprostszy model

założenia:

- rozmiar kontaktów suwaka z podłożem jest dużo mniejszy niż długość fali Rayleigha
- deformacje fali Rayleigha spowodowane obciążeniem powierzchni przez suwak są niewielkie i nie wpływają na siebie
- deformacje są równomiernie rozłożone wzdłuż suwaka

W czasie jednego cyklu fali Rayleigha $-\frac{\pi}{2} \le \omega t \le \frac{\pi}{2}$ wibracje w kierunku normalnym do powierzchni można w uproszczeniu opisać wyrażeniem:

erzenni mozna w aproszezenna opisac wyrazem

 $y = A_v \sin \omega t$

Suwak będzie poddawany działaniu siły normalnej (docisk) $F_n = c_y A_y (\sin \omega t - \sin \varphi)$ na odcinku styku styku pomiędzy

$$\omega t = \varphi, \left(-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}\right), \quad \mathbf{a} \qquad \omega t = \pi - \varphi$$

c_v jest współczynnikiem zależnym od sztywności podłoża

Analogicznie wzdłuż powierzchni:

$$x = A_x \cos \omega t$$
$$F_w = c_x A_x \left(\cos \omega t - \cos \varphi \right)$$

Siła działająca na suwak będzie proporcjonalna do deformacji wzdłuż powierzchni w punktach kontaktu, stąd:

$$F = c_x A_x \left[\cos \varphi - \cos \omega t - (\omega t - \varphi) \sin \frac{v}{A_y \omega} \right]$$

Zależność ta obowiązuje dla dostatecznie dużego współczynnika tarcia (suwak przesuwa się bez znaczącego poślizgu).

Maksimum możliwości

Światło 15 mW/cm² wewnątrz pomieszczeń 10 µW/cm²

Energia termiczna 15 $\mu W/cm^2$ ew. cm^3 przy gradiencie 10 $^o\!C$

Energia mechaniczna drgań przetworniki piezoelektryczne 200 μ W/cm³ przetworniki elektrostatyczne 100 μ W/cm² przetworniki elektromeagnetyczne 1 μ W/cm³

Deformacja folii

$$x = \frac{y}{R} \qquad y \cdot \text{odległość od ustalonej płaszczyzny}$$

$$R = \frac{L^3}{3(L-l)\delta z}$$
I · odległość od przymocowanego końca do końca swobodnego
L - całkowita długość
bz - wychylenie

$$x(l) = \frac{3}{4} \frac{H}{L^3} (L-l)\delta z$$
H - grubość folii

Indukowane pole elektryczne

$$E_3 = \frac{x(l)}{d_{31}}$$

Ładunek indukowany w odległości l

$$Q_{dl} = \varepsilon_3 E_3(l) w \cdot dl$$
$$Q_{tot} = \int_0^L Q_{dl} dl$$

Ładunek całkowity Q_{tt}

Generowane napięcie

$$V = \frac{Q_{Tot}}{C} = \frac{\varepsilon_3 \cdot h_{31} \cdot w \cdot \int_0^L x_1(l) dl}{C} = \frac{3}{8} \left(\frac{H}{L}\right)^2 h_{31} \delta z$$

	M. A. M M I . M. M.	whether a constally	of here of any of a d	wes of Most and
а 18.а а.в. т.а	1.0 B.O BROD		3.6 4.0	a.a a.i
Przemieszczenie [cm]	Promień krzywizny [m]	Naprężenie znorm. [·10 ⁻⁵]	Napięcie zmierzone [mV]	Napięcie obliczone (mV)
0,0	x	0	~20	0
0,5	1,92	0,521	64	55,4
1,0	0,96	1,04	80	110,81
1,5	0,64	1,56	106	166,21
2,0	0,48	2,08	163	221,61
2,5	0,384	2,60	202	277,02
3,0	0,32	3,13	232	332,42
19,8	0,048	20,7	_	2200

Rezystancja obciążenia [kΩ]	Amplituda napięcia [mV]	Moc [nW]
10	35,1	123
100	91,7	84
1 000	301	91

	mand in	PROPERTIES	PZT-8 (Hard)	PZT-5A (Soft)	PZT- (So
And the second se		Density	7.5	7.5	7.4
7		Young's Modulus (× 10 ¹⁰ N/m ²)	9.3	6.6	6.4
		Curie Temperature	300	350	19
	and the second	(°C)			
and the second second		Mechanical Q	900	100	6
	A CONTRACTOR	Dielectric Constant (1 kHz)	1100	1725	34
A Way to port		Dissipation Factor (1 kHz)	0.3	2.0	2.
		k31	0.33	0.36	0.3
pools of Green PZT Fibers	Sintered ZT Fibers	kp	0.56	0.62	0.6
		k33	0.66	0.72	0.7
		k15	0.59	0.69	0.0
		d ₃₁ (×10 ⁻¹² m/V)	-107	-173	-20
		d33 (×10 ⁻¹² m/V)	241	380	58
		d15 (×10 ⁻¹² m/V)	382	582	73
CALCE 2	MA IM	g31 (×10 ⁻³ Vm/N)	-10.9	-11.5	-8
		g ₃₃ (×10 ⁻³ Vm/N)	24.8	25.0	19
		g15 (×10 ⁻³ Vm/N)	28.7	38.2	28
		s_{11}^{E} (×10 ⁻¹² m ² /N)	10.8	15.2	15
PZT- single fiber	10 pp DZT Missatzustura	s_{12}^{E} (×10 ⁻¹² m ² /N)	-3.6	-5.3	-4
ου μm · · · · · · · · · · · · · · · · · ·	TO JUIN P21- Microstructure	S_{11}^{E} (x10 ⁻¹² m ² /N)	13.7	18.3	19

Group	Transducer	Dimen. (cm)	Measure method	Mode	V _{max} (V)	Peak Power (<i>mW</i>)	Stored energy in 13 s (<i>mJ</i>)
Kyushu NIRI, Japan	PZT-5A disk	D=2.4 T=0.3	Ball drop	d ₃₃	120	0.45	NA
MIT	Multilayer bimorph PVDF	8×10	walking	d ₃₃ & d ₃₁	60	20	17
mit/ Nasa	Thunder	7×9.5 ×0.05	walking	d ₃₁ & d ₁₅	150	80	110
Ocean Power Tech., Inc.	EEL PVDF	Five 132×15 ×0.04	Ocean waves	d ₃₃ & d ₁₅	3		NA
Univ. of Pittsburgh	PZT-5A plate	1×1× 0.0009	Tension	d ₃₁		0.0023	0.3
Penn State University	Quickpack	5×3.8× 0.07	Vibration	d ₃₃	43	· — ·	169
ACI	AFCB	13×1 ×0.1	Vibration (25 Hz)	d ₃₃	400	120	880

			A AA A		٨	
	Π Π Π	Π			Λ	
				11. 141. 1	AI.	
00 0 (/ // //	V VV V	V VV V	0 00 0	/0	
00 V V 1 0 1 1	$1 \ 0 \ 1 \ 1$	1 0 0 1	101	1 1 1	0	
	1011	1001	101	1 1 1	0	
	1011	1 0 0 1	101	1 1 1	0	
VV V (1 0 1 1 konfiguracja	Sgn. we	straty AFP	straty	U UU U	0 szum (RMS)	SN
VV V V 1 0 1 1 konfiguracja 13 elem, AFP	Sgn. we	straty AFP	straty detektora -27 dB	U _{wy}	0 szum (RMS) < 10 mV	SN >700
VV V V 1 0 1 1 konfiguracja 13 elem. AFP z diodą	Sgn. we +7 dBm - 6 dBm	straty AFP -14 dB -14 dB	straty detektora -27 dB -50 dB	Uwy 7 mV 0,1 mV	0 szum (RMS) < 10 mV < 10 mV	SN >700 >10
VV V V 1 0 1 1 konfiguracja 13 elem. AFP z diodą 13 elem. AFP	Sgn. we +7 dBm - 6 dBm +7 dBm	straty AFP -14 dB -14 dB -14 dB	straty detektora -27 dB -50 dB +6 dB	Uwy Uwy 7 mV 0,1 mV 200 mV	0 szum (RMS) < 10 mV < 10 mV 300 mV	SN >700 >10 670
VV V 1 0 1 0 1 1 konfiguracja 13 elem. AFP z diodą 13 elem. AFP z det. AFP z det. aktywnym	Sgn. we +7 dBm - 6 dBm +7 dBm - 10 dBm	straty AFP -14 dB -14 dB -14 dB -14 dB	straty detektora -27 dB -50 dB +6 dB 0 dB	Uwy 1 1 1 1 7 mV 0,1 mV 200 mV 20 mV	0 szum (RMS) < 10 mV < 10 mV 300 mV 300 mV	SN >700 >10 670 67

Napięcie powstałe na elektrodach:

$$U = \frac{Q_{C}}{C_{k} + C_{m}} = \frac{d_{ij}F_{x}}{C_{k} + C_{m}} = \frac{d_{ij}F_{x}}{C_{s}}$$

 C_k – pojemność kryształu C_m – pojemność układu pomiarowego

Miarą dobroci czujnika jest jego czułość piezoelektryczna:

$$S = \frac{dU}{dF_x} = \frac{d_{ij}}{C_k + C_m} = \frac{d_{ij}}{C_s}$$

Zastosowanie struktury kanapkowej zwiększa napięcie wyjściowe:

$$U = \frac{nQ_C}{nC_k + C_m} = \frac{nd_{ij}F_x}{nC_k + C_m}$$

Układ charakteryzuje się górną częstotliwością graniczną, która wynika z rezonansu płytki. Maksymalna czułość leży w okolicach rezonansu, natomiast przyrząd pracuje na zboczu krzywej rezonansowej poniżej f_0 .

Transmitancja operatorowa czujnika ma postać:

$$K_{s} = \frac{U(s)}{a(s)} = \frac{d_{ij}R_{s}C_{s}}{(1 + R_{s}C_{s})\left(\frac{s^{2}}{\omega_{0}^{2}} + \frac{2\beta s}{\omega_{0}} + 1\right)}$$

U(s) – transformata Laplace'a napięcia wyjściowego a(s) – transformata Laplace'a przyspieszania

$$K_{s}(t) = \frac{e^{-\omega\beta t} \sinh\left(t\sqrt{\omega^{2}\left(\beta^{2}-1\right)}\right)\sqrt{\omega^{2}\left(\beta^{2}-1\right)}d_{ij}R_{s}C_{s}}{\left(1+R_{s}C_{s}\right)\left(\beta^{2}-1\right)}$$

Po pokonaniu dystansu *L* fala EM wzbudza prąd w antenie i generuje za pomocą dołączonego doń przetwornika IDT falę akustyczną o postaci:

$$S_{\nu}(t) = S_{e}(t)S_{12}(t) = V(t)e^{j(\omega_{0}t - k_{e}L)}$$

 $S_{12}(t)$ element macierzy rozproszenia układu antena - IDT, V(t) amplituda sygnału akustycznego

Sygnał po odbiciu się od układu reflektorów akustycznych trafia poniwnie do IDT i zostaje przekształcony na postać EM :

$$S_{ach}(t) = S_a(t)S_{21}(t) = V_{ach}(t)e^{j[\omega_0 t - (2k_e L + 2k_a l_1 + \dots + 2k_a l_n)]}$$

 $V_{ech}(t)$ amplituda sygnału ech fali EM k_a liczba falowa fali akustycznej, $l_1 \dots l_n$ odległości reflektorów akustycznych liczone od środka IDT

Oznaczając $2k_e L = \Phi_e$ oraz $2k_a l_n = \Phi_{na}$

$$S_{ech}(t) = V_{ech}(t)e^{j\left(\omega_0 t - \Phi_e - \sum_{n=1}^{m} \Phi_m\right)}$$

m jest liczbą reflektorów

