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Abstract

Surface acoustic waves are modes of propagation of elastic energy along the surface of a solid,
whose displacement  amplitudes  undergo exponential  decay away from this surface.   When these
waves propagate in piezoelectric material, there is an accompanying electric potential that has the
same  spatial  and  temporal  periodicities  as  the  surface  wave.   Acoustic  charge  transport  is  a
phenomenon that results from the interaction of this potential with a two dimensional electron gas
formed within the piezoelectric  material, and has  been the focus of intensive research in the past
five  years  due  the possible  optical  and quantum computing  device  applications  it  presents.   This
theoretical  project  has  investigated  surface  acoustic  wave propagation  for  arbitrary  directions  on
the  (001)  plane  of  Alx �Ga1�x �As.   The  allowed  velocities,  decay  constants,  displacement  ampli-
tudes and associated piezoelectric  fields and potential  have been numerically calculated for these
directions.   Phonon focusing  effects  and  the  variation  of  the  piezoelectric  fields  and  potential  at
different  depths have also been investigated.  Based on these results,  new suggestions  for experi-
mental investigations have been made that minimise Stark effects in the two dimensional electron
gas and maximise the piezoelectric potential of the surface acoustic wave.
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Chapter One: Introduction

1.1 Surface Acoustic Waves
Research into surface acoustic waves started back in 1887 when Lord Rayleigh first proposed1

their existence.  Surface acoustic waves, (SAW) are modes of propagation of elastic energy along
the  surface  of  a  solid,  whose  displacement  amplitudes  undergo  exponential  decay  beneath  this
surface.  Typically almost all of the energy is localised within a depth of two wavelengths.

Interest  in  surface  acoustic  waves  has  grown  since  Rayleigh's  discovery.   They  first  attracted
the attention of seismologists, and continue to, for two reasons: First because of the guided nature
of  the  trajectory  of  such  waves  along  the  earth's  surface,  and  second  due  to  the  comparison
between these surface waves and bulk waves produced by a disturbance; or, as Lord Rayleigh put
it,  "diverging  in  two  dimensions  only,  they  must  acquire  at  a  great  distance  from  the  source  a
continually increasing preponderance".  Over a hundred years after his discovery, there has been a
resurgence  of  studies  in  surface  acoustic  waves  from  condensed  matter  physicists,  interested  in
acoustic charge transport in piezoelectric semiconductors.

Rayleigh's treatment only involved isotropic media, and the first anisotropic analysis of surface
acoustic waves was made by Stoneley2  in 1955.  He produced expressions for propagation in the
high symmetry directions on the basal plane of cubic crystals, but failed to recognise a whole set
of solutions now known as generalised Rayleigh waves.3   These solutions, which will be spoken
of in depth in chapter two, are characterised by an oscillatory decay away from the free surface, as
opposed to the simple exponential decay occurring in isotropic media.  Stoneley's neglect of these
solutions  lead  him  to  the  conclusion  that  surface  wave  propagation  could  only  exist  in  a  very
limited class of cubic crystals.

Studying  a  more  general  set  of  propagation  directions  on anisotropic  media  became  practical
after the advent of high-speed digital computers.   Such research4�6  conducted in the early to mid
1960s on a variety of planes of cubic crystals came to the conclusion that there exists a region of
forbidden propagation directions.   It was shown7  later that such regions do not exist, but rather a
degeneration  of  surface  modes  into  bulk  modes  occur  in  these  directions.   This  phenomena  will
also be discussed in chapter two.

The  many  device  applications  utilising  ultrasonics  lead  to  a  resurgence  of  interest  in  surface
acoustic  waves  in the  late  1960s,  including  ultrasonic  detection  of  surface  flaws8  and  ultrasonic
delay lines�.9   Early transducer devices utilising SAWs on piezoelectric crystals10  emerged around
the same time, whilst theoretical considerations of the surface wave problem to include piezoelec-
tric effects  was first  studied by Tseng.11,12   Further  interest  resulted from the multitude  of signal



processing applications available utilising surface acoustic waves - partly because the character of
the  wave  can  be  changed  in  transit,13  as  well  as  the  fact  the  wave  can  be  guided14,15  and  even
amplified.13   Ultrasonic amplification  was the first  phenomena  studied that involved interactions
with  electrons,  and  the  basic  theory  is  outlined  in  the  appendix.   This  ability  to  manipulate  the
surface  wave  opened  up  the  prospect  of  creating  analogs  of  the  entire  line  of  electromagnetic
waveguide devices in elastic media,16  thereby reducing the size of such a device corresponding to
the ratio of the velocity of acoustic waves to electromagnetic waves.

1.2 Acoustic Charge Transport
Probably the most interesting application of surface acoustic waves is a phenomenon known as

acoustic  charge  transport  (ACT).   Acoustic  charge  transport  involves  the  interaction  between
surface  acoustic  waves  and  free  electrons  within  a  piezoelectric  semiconductor.   Extensive
theoretical17�20  and  experimental21�23  research  has  been  made  of  late,  particularly  in  the  ACT
properties  of  a  two-dimensional  electron  gas  (2DEG),  formed  within  a  GaAs � Alx �Ga1�x �As
heterostructure.

A  surface  acoustic  wave  propagating  upon  a  piezoelectric  crystal  has  associated  with  it  an
electric  potential  having  the  same  temporal  and  spatial  periodicities  as  the  SAW.   This  surface
wave  interacts  with  the  electron  gas  whereby  the  electrons  are  confined  within  the  moving
quantum  wells  formed  by  the  potential.   The  result  is  an  acoustoelectric  current,24�28  and  an
attenuation17�19  of the acoustic wave.

This  acoustoelectric  current  has  metrology  applications.   At  present  many-junction  electron
pumps29  are  used  as  a  current  standard,  which  transfer  electrons  with  an error  of  approximately
one part per 108 .  A drawback of these devices is the low current delivered - of the order of 1pA.
Alternatively,  the acoustoelectric  current is of the order of nanoamps, with comparable error.  To
direct  the  current  in  the  GaAs � Alx �Ga1�x �As  heterostructure,  a  channel  is  formed  using  the
split � gate technique,30  and as a result the acoustoelectric  current measured as a function of gate
voltage is observed to display a plateau-like structure.  The value of the current, I, on each plateau

is I � e f n, where e is the electron charge, f is the frequency of the SAW and n is the number of

electrons  transferred  through  the  cycle  per  cycle.   This  reflects  the  number  of  electrons  trapped
within the dynamic quantum wells associated with the surface acoustic wave. 

Another  branch  of  applications  of  ACT is  the  whole  new range  of  acousto-optic  devices  that
can  employ  this  phenomena.   As  the  scale  of  transistors  on  silicon  based  computer  chips  is
approaching the quantum limit, new avenues of computing will have to be followed, one of which
is  the  optical  regime.   One  present  technical  problem  lies  in  the  memory  component  of  such
computers.  How is light stored?  One possibility31  may follow from the research of Rocke et al,21

published in Physical Review Letters, eloquently named "Acoustically Driven Storage of Light in
a  Quantum  Well".   Optically  excited  electron-hole  pairs,  known  as  excitons,  are  trapped  within



the moving potential associated with the surface acoustic wave.  The resulting separation of these
electron-hole  pairs  leads  to  an increase  of the  radiative  lifetime  by  orders  of  magnitude  as com-
pared  to  the  unperturbed  pairs.   External  screening  of  the  lateral  piezoelectric  fields  triggers
radiative recombination after very long storage times at a remote location on the crystal. (see Fig.
1.1)  This  conversion  of  photons  into  long  lived  electron-hole  pairs  which  is  efficiently  recon-
verted back into photons can serve as an optical delay line, operating at sound velocities.

Figure 2.1:

The detected photoluminescence (PL) at the gated detector.  Optically excited electron-hole
pairs are  trapped in the moving  potential associated with the SAW.  This potential  is then
screened  at  x � xout  by  semitransparent  metal  gates,  and  the  electron-hole  pair  undergo
radiative recombination, as detected at t � t2 .  [From Rocke et al21 ]

A  significant  recent  application  was  proposed32  in  September  2000  for  the  utilisation  of
acoustic  charge transport  phenomena to implement  qubits and quantum logic gates of a quantum
computer.

1.3 Focus of Research
The acoustic  charge transport  problem requires  a deep understanding  of the elastic and piezo-

electric properties of surface acoustic waves.  Although the high symmetry directions of propaga-
tion for  piezoelectric  crystals  have  been studied �extensively�,11,12  no information  could  be found
on the nature of the piezoelectric potential and associated fields as functions of depth and propaga-
tion direction.  These two parameters, the propagation direction and depth are the most significant
in  the  design  of  ACT  experiments.   The  purpose  of  this  project  was  to  investigate  how  they
govern the nature of the piezoelectric potential that mediates the charge transport.



Surface  acoustic  wave  propagation  on  the  (001)  plane  of  the  semiconductor  alloy
Al0.3 �Ga0.7 �As is investigated  here  for  arbitrary  directions.   This is achieved  by solving a contin-
uum model of the wave equation wave on an infinite, unbounded half space subject to stress free
boundary  conditions  at  the  surface,  and  the  requirement  that  the  amplitudes  of  the  solutions
vanish at a finite depth below this surface.  Piezoelectricity also introduces an additional boundary
that  requires  the  continuity  of  the  normal  component  of  the  electric  displacement  across  this
surface.

The  anisotropic  nature  of  the  cubic  crystal  Al0.3 �Ga0.7 �As  manifests  an  angular  dependence
upon  all  the  characteristic  properties  associated  with  piezoelectric  elastic  wave propagation  on a
free surface.  The properties,  including allowed velocities, decay constants, associated amplitudes
and  piezoelectric  potential  are all  numerically  determined and  investigated  in detail  for  propaga-
tion  directions  between  [100]  and  [110]  .   This  covers  all  unique  directions  on  the  (001)  plane
(and equivalent planes) for cubic crystals.

The solution to the wave equation is a superposition of three (or four in the case of piezoelec-
tric  coupling)  plane  waves,  each  with  an  associated  decay  constants,  which  is  the  component  of
the wavevector normal to the surface.  The nature of these decay constants governs the behaviour
of the surface wave below the surface - and provides explanations for the degeneration of surface
wave solutions in particular ranges of propagation directions.

The amplitudes of the surface waves are also the focus of attention, and the associated polarisa-
tions in a given direction give further information into the piezoelectric coupling.  Three polarisa-
tions  are  considered  -  the  vertical  component;  the  longitudinal  component,  measured  along  the
propagation  direction;  and  the  transverse  component,  measured  perpendicular  to  the  sagittal
plane, defined as the plane parallel to the surface and normal to the wavevector.  Fig. 1.2 shows a
surface wave polarised in the sagittal plane, on an isotropic material.



Figure 2.2:
The particle displacements  for a surface  acoustic wave polarised in the sagittal  plane in an
isotropic material.   Particles  undergo circular displacements  in this plane and the wave has
decayed significantly at a depth of 0.2Λ [From Dieulesaint and Royer33 ]

Acoustic charge  transport  is the result  of an electric  potential coupled to an acoustic  wave, so
the  most  important  aspect  of  the  surface  wave  problem  is  the  piezoelectric  potential.   This  is
compared  in  all  directions  of  propagation  and  a  variety  of  depths,  as  are  the  associated  fields.
Considerations are also made for phonon focusing effects, which involve the concentration of the
flow of energy in particular directions of the crystal.  Such effects could have significant upon the
nature of the electric fields and potential in particular directions.

The  theory  behind  acoustic  charge  transport  phenomena  is  discussed  in  detail.   Based  on
calculations  made  for  the  electric  potential,  suggestions  are  made  of  possible  combinations  of
propagation  direction  and  depth  of  the  two  dimensional  electron  gas  that  would  be  suitable  for
acoustic  charge  transport  experiments,  and  any  advantages  or  disadvantages  in  doing  so.   A
solution of the Schrödinger equation is derived for an electron travelling through the 2DEG layer
within the periodic surface wave potential, and an expression for the energies of these solutions is
presented.

The method used and results obtained for non-piezoelectric  surface acoustic  waves is featured
in chapter two, and for piezoelectric SAWs in chapter three, along with an extensive treatment of
the piezoelectric fields and potential.  Acoustic charge transport and phonon focusing is discussed
in  chapter  four,  and  chapter  five  presents  a  summary  of  this  work  and  outlines  possible  future
research.



Chapter Two: Surface Acoustic Waves

Surface  acoustic  waves  are  modes  of  elastic  energy  propagation  governed  by
the  elastic  wave  equation  and  boundary  conditions  that  specify  a  stress  free
surface.   The  first  section  of  this  chapter  presents  a  general  formulation  of  this
problem, which includes the requirement  that distinguishes bulk modes of propa-
gation  to  surface  modes  -  that  the  associated  amplitude  of  the SAW  vanishes  in
the direction normal to the surface at a finite depth.

In three dimensions,  there are three wave equations  and three boundary condi-
tions,  which  can   both  be  formulated  into  matrix  form.   The  requirement  of  a
vanishing determinant  of these matrices is used to determine the wavevectors  and
the  allowed  phase  velocities,  respectively.   Furthermore,  the boundary  condition
matrix provides three homogenous  equations involving the amplitudes,  and when
solved  in  conjunction  with  the  three  wave  equations,  a  complete  form  of  the
surface wave solution can be established.

2.1 Theory and Method

2.1.1 Crystal Structure of Alx �Ga1�x �As
The  III-IV  compound  alloy  Alx �Ga1�x �As  has  a  zinc-blende  structure  which  is  based  on  the

cubic  space  group  4
��

3m.   It  consists  of  two  interpenetrating  face  centred  cubic  sublattices.   One
sublattice is displaced by 1/4 of a lattice parameter  in each direction from the other sublattice, so
that  each  site  of  one  sublattice  is  tetrahedrally  coordinated  with  sites  from  the  other  sublattice.
That  is,  each  atom  is  at  the  center  of  a  regular  tetrahedron  forms  by  four  atoms  of  the  opposite
type.   When the two sublattices have the same type of atom, the zinc-blende lattice becomes the
diamond lattice.



Figure 2.1:
The general Zinc-blende cubic crystal structure (left), and the corresponding structure of the
alloy Al0.5 �Ga0.5 �As (right) [both from Adachi39 ]

The space  group 4
��

3m is  characterised  by  three four  fold axes,  with inversion;  four  three  fold
axes,  and  six  mirror  planes.   The  zinc-blende  crystal  structure  is  shown in  Fig.  2.1  as  well  as  a
specific example of Alx �Ga1�x �As with x � 0.5.  If the three direct two fold axes are chosen as the
reference frame, it can be shown33  that the non vanishing components of the elastic moduli tensor
for a crystal with cubic symmetry becomes:

(2.1)�cΑΒ � �

�����������������������������

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

�����������������������������
with three  independent  elastic  constants,  c11 , c12 ,  and  c44 .   The values  for  each  of  the elastic

constants  and  the  density  for  the  Alx �Ga1�x �As  alloy  depend  linearly38  upon  the  aluminium
concentration ratio x.  For Al0.3 �Ga0.7 �As, the values of the elastic constants are:

c11 � 11.922�1010 Nm�2

c12 � 5.476�1010 Nm�2

c44 � 5.925�1010 Nm�2

Ρ � 4.88�103 �kgm�3



2.1.2 Geometry of system
The  model  geometry  for  acoustic  charge  transport  experiments  is  represented  in  Fig.  2.2.   A

satisfactory  approximation  when  solving  for  surface  wave  modes  is  an  infinite  half  space  z 
 0
unbounded in the x and y direction. Surface waves are localised in the xy plane, and their ampli-
tudes decay into the bulk of the medium; as z � �∞.  The cartesian axes are aligned to the crystal
axes whereby wave propagation occurs on the (001) plane of Alx �Ga1�x �As.  

Figure 2.2: Approximate model geometry for acoustic charge transport experiments.

The two dimensional electron gas forms within the GaAs layer, which is located at a distance d
from  the  surface,  usually  on  the  order  of  100 � 500�nm.   The  layer  is  considered  here  as  an
infinitesmal slab, and thus interface effects between the Alx �Ga1�x �As and GaAs can be neglected.
This approximation holds as the GaAs layer is on the order of 10nm, and the lattice constants and
elastic constants of the two media are very similar.

2.1.3 The Wave Equation
In  the  absence  of  external  forces,  the  wave  equation  for  a  perfectly  elastic,  homogeneous,

anisotropic medium can be written as

Ρ�
�2 ui
� t2

�
�Tij

�xj

where  ui  are  the  displacements  measured  along  the  three  cartesian  axes  xi

(x1 � x, x2 � y, x3 � z).   The  density  of  the  medium  is  Ρ,  and  the  stress  tensor,  Tij ,  neglecting
piezoelectric effects is defined as in appendix A.2 (Eqn. 0.22):

Tij � cijkl �
�ul

�xk



With summation implied over the repeated indicies, the wave equation in full looks like:

(2.2)Ρ�
�2 ui
� t2

� cijkl �
�ul

�xj ��xk

In the case of a crystal with cubic symmetry, the elastic stiffness tensor cijkl  has three indepen-
dent elastic constants, c11 , c12 and c44 .   For the three orthogonal displacements ux , uy and uz , the
wave equation breaks into three partial wave equations.  Taking the cubic symmetry into account,
they are:

(2.3)

Ρ�
�2 ux
� t2

� c11 �
�2 �ux
�x2

� c44 �
�
����
�2 �ux
�y2

�
�2 �ux
�z2

�
	


 � �c12 � c44 �������

�2 �uy

�x��y

�
�2 �uz
�x��z

�
	




Ρ�
�2 uy

� t2

� c11 �
�2 �uy

�y2

� c44 �
�
����
�2 �uy

�x2

�
�2 �uy

�z2

�
	


 � �c12 � c44 �������

�2 �ux
�x��y

�
�2 �uz
� y��z

�
	




Ρ�
�2 uz

� t2

� c11 �
�2 �uz

� z2

� c44 �
�
����
�2 �uz

�x2

�
�2 �uz

�y2

�
	


 � �c12 � c44 �������

�2 �ux

�x��z

�
�2 �uy

�y��z

�
	




Assuming plane waves  solutions ui , with wavevector k = (kx , ky , kz ), frequency Ω  and ampli-
tude of displacement Ai  with the form:

ui � Ai Exp�� �kx x � ky y � kz z �Ω t��
The differential  operators expressed in the partial wave equations (Eqn. 2.3) can  be written in

terms of wavenumbers and frequencies:

(2.4)
�

�x

� � kx
�

�y

� � ky
�

� z

� � kz
�

� t

� �� Ω

The plane wave solution can be used to express to most general solution of the wave equation
free  of  boundary  conditions.   Such  elastic  waves  that  propagate  in  an  unbounded  medium  are
know  as  bulk  waves.   When  dealing  with  surface  waves  is  it  useful  to  consider  a  wavevector
parallel to the surface, defined as k , where

k�� � kx �x
� � ky �y

�

So now the plane wave solution can be a function of direction upon the surface by redefining
the wavenumbers as

kx
k � Cos�Θ� ky


k � Sin�Θ� kz

k � Κ

where Θ is the angle between the x-axis and k .  The wavenumber in the z-direction is character-
ised by a decay constant, Κ.   The plane wave solutions are now of the form:



(2.5)ui � Ai �Exp�� k �Κ z� Exp�� k �Cos�Θ� x � Sin�Θ� y� V t��
where  V  is  the  phase  velocity  of  the  SAW  defined  as  V  =  Ωk .   Substituting  these  into  the

partial waves equations (Eqn. 2.3) transformed by Eqn. 2.4, a 3�3 matrix, �, can be formed:

� �

�
�
����������

c11 �Cos�Θ�2 � c44 �Sin�Θ�2 � Κ2 � � ΡV2 �c12 � c44 ��Cos�Θ��Sin�Θ� �c12 � c44 ��Cos�Θ��
�c12 � c44 ��Cos�Θ��Sin�Θ� c11 �Sin�Θ�2 � c44 �Cos�Θ�2 � Κ2 � � ΡV2 �c12 � c44 ��Sin�Θ��Κ

�c12 � c44 ��Cos�Θ��Κ �c12 � c44 ��Sin�Θ��Κ c11 �Κ2 � c44 � Ρ V
where

(2.6)�.
�
�
��������

Ax

Ay

Az

�
	








 �

�
�
�������

0
0
0

�
	









2.1.4 Surface Wave Solutions
Surface waves of the form given in Eqn. 2.5 are defined such that the quantity Κ must be lead

to the amplitudes of displacement to vanish as z � �∞.  This requires Κ to have a negative imagi-
nary component.   In this  respect,  the  z-dependence  of Eqn.  2.5  is regarded  as part  of  the ampli-
tude, and the wavelike properties are

Exp�� k �Cos�Θ� x � Sin�Θ� y� V t��
So, if Κ is complex rather than purely imaginary, the wavevector is still assumed to be parallel

to the surface.  Similarly, the planes of constant phase are perpendicular to the sagittal plane.  The
amplitude varies in the z-direction over a plane of constant phase according to the real component
of the decay constant.

For  a non trivial  solutions  of the  three homogeneous  equations  (Eqn.  2.6),  the determinant  of
� must vanish, ie:

(2.7) �  � 0

This is known as the secular equation and is a sixth order equation in Κ with phase velocity V
and propagation direction Θ as parameters.  As the coefficients of the powers of Κ in Eqn. 3.9 are
all real, there will be, in general, three complex-conjugate roots.  The roots lying in the upper half
of the complex plane will lead to a solution (Eqn. 2.5) that will exponentially increase to infinity
as z � �∞.   For a  surface wave solution,  these  three roots are  disregarded  as they do not  satisfy
the condition that the displacements vanish into the bulk of the medium.  The other three roots 

Κr � Κr �V, Θ� r � 1, 2, 3



are chosen,  which  give solutions that  correspond  to surface  waves.   The phase velocity  is the
same  for  each  Κr  and  is  determined  from  the  boundary  conditions,  as  discussed  later.   A  linear
combination  of  the solution  given  in Eqn.  2.5 for  each Κr  now forms  the assumed solution  for  a
surface acoustic wave, which reads

(2.8)ui � �
r�1

3

Ai,r �Exp�� k �Κr z��Exp�� k �Cos�Θ� x� Sin�Θ� y � V t��
Notice now for each chosen root of the secular equation Κr  there exists an associated amplitude

Ai,r .  For each displacement ui  there are three amplitudes components to be determined, so a total
of nine amplitudes have to be found.

2.1.5 Boundary Conditions
As  the  medium,  in  the  half  space  z � 0,  is  unbounded  in  the  x  and  y  direction,  the  elastic

boundary conditions are such that the surface z � 0 is stress free; ie, no external forces are acting
upon it.  From the definition of stress from section 2.1.3:

Tij � cijkl �
�ul
�xk

The stress free condition can be expressed as:

(2.9)Ti3 � ci3kl �
�ul
�xk

� 0 at �z � 0

So, in other words, for the boundary condition to be satisfied, it is required that:

T13 � T23 � T33 � 0 at �z � 0
Using Eqn. 2.9 and the same assumptions from Eqn. 2.4, stresses at the surface z � 0 become

T13 � c44 � �uz
�x

�
�ux
�z

� � �� c44 � kx �uz � kz �ux � � 0 at �z � 0

T23 � c44
����
�uz
�y

�
�uy

� z

�	

 � �� c44 �ky �uz � kz �uy � � 0 at �z � 0

T33 � c12
����
�ux
�x

�
�uy

�y

�	

 � c11 �
�uz
�z

�

�� c12 �kx �ux � ky �uy � � � c11 �kz �uz � 0 at �z � 0
Simplifying and constructing the superposition by summing over each Κr , the final form of the

three boundary conditions are



(2.10
)

�
r�1

3 �c44 �Cos�Θ��Az,r � c44 �Κr Ax,r � � 0

�
r�1

3 �c44 �Sin�Θ��Az,r � c44 �Κr �Ay,r � � 0

�
r�1

3 �c12 �Cos�Θ��Ax,r � c12 �Sin�Θ��Ay,r � c11 �Κr �Az,r � � 0

2.1.6 Amplitudes
The  superposition  solution  (Eqn.  2.8)  leads  to  a  system  with  nine  unknowns  Ai,r  and  six

equations  from the  three wave equations  and  the three boundary  conditions.   By considering  the
three wave equations (Eqn. 2.6) and dividing through by one of the amplitudes, say Az,r ;

cos�Θ� sin�Θ� �c12 � c44 � �r � cos�Θ� �c12 � c44 � Κr �
�r �cos2 �Θ� c11 � Ρ V2 � c44 �sin2 �Θ� � Κr

2 �� � 0
c11 Κr

2 � Ρ V2 � c44 � cos�Θ� �c12 � c44 � �r Κr � sin�Θ� �c12 � c44 � �r Κr � 0

sin�Θ� �c12 � c44 � Κr � �r ��ΡV2 � sin2 �Θ� c11 � c44 �cos2 �Θ� � Κr
2 �� � 0

amplitude ratios can be defined:

�r � �r �V, Θ� � Ax,r
Az,r

and �r � �r �V, Θ� � Ay,r

Az,r

Choosing any two of the above equations  and solving will yield explicit  expressions for these
ratios.  These amplitude ratios, being dependent upon the parameters direction and phase velocity
contain  information  on  how  the  polarisation  of  the  surface  wave  changes  as  the  wavevector  is
rotated through an angle of Θ.  But most importantly they can be substituted back into the bound-
ary conditions (Eqn. 2.10) such that each can be expressed by only three amplitude components -
in this case Az,r :



�
r�1

3 �c44 �Cos�Θ��Az,r � c44 �Κr �r �Az,r � � 0

�
r�1

3 �c44 �Sin�Θ��Az,r � c44 �Κr ��r �Az,r � � 0

�
r�1

3 �c12 �Cos�Θ���r �Az,r � c12 �Sin�Θ���r �Az,r � c11 �Κr �Az,r � � 0

Now the  boundary conditions  contain only the amplitudes Az,r ,  so  a 3�3 matrix, �, known as
the boundary condition matrix can be formed, where:

(2.11)�.
�
�
��������

Az,1

Az,2

Az,3

�
	








 �

�
�
�������

0
0
0

�
	









The form of the boundary conditions and thus the boundary condition matrix depends upon the
choice of amplitude ratios.   This leads  to the question  whether one choice is better  than another.
As the direction of propagation along the surface changes, so do the associated amplitudes of the
elastic  wave.   In some particular  directions,  some polarisations  are absent  - which  is reflected  in
the  fact  that  one  of  the  components  of  displacement  ui  is  zero.   This  will  correspond  to  a  zero
amplitude  -  and  thus  dividing  Eqns.  2.6  by  this  amplitude  will  lead  to  algebraic  singularities  in
such  directions  within  the  boundary  condition  matrix.   It  is  important  to  ensure  that  for  each
direction, the amplitude ratios are finite. 

For the set of boundary conditions and amplitude ratios defined above, the � matrix looks like

� �

�
�
���������

cos�Θ� c44 ��1 Κ1 c44 cos�Θ� c44 � �2 Κ2 c44 cos�Θ� c44 � �3 Κ3 c44

sin�Θ� c44 � �1 Κ1 c44 sin�Θ� c44 � �2 Κ2 c44 sin�Θ� c44 ��3 Κ3 c44

cos�Θ� c12 �1 � sin�Θ� c12 �1 � c11 Κ1 cos�Θ� c12 �2 � sin�Θ� c12 �2 � c11 Κ2 cos�Θ� c12 �3 � sin�Θ� c12 �3 � c11 Κ3

�
	











For a  non trivial  solution  of  Eqn.  2.11  the determinant  of �  must  vanish.   As the amplitudes
Az,r  can be complex, the determinant is, in general also complex.  For any particular choice of V,
it is unlikely to give values of the amplitude ratios and Κr  such that the real and imaginary parts of
the  determinant  of  �  are  both  zero.   The  algebraic  complexity  of  this  determinant  makes  it
impractical to try and derive an analytical expression for velocity that sees it vanish.  Instead it is
worth  plotting out the real and  imaginary parts  of  �   as a function of velocity,  and finding the
roots  by inspection.   Many root finding routines,  especially those  based upon derivatives  tend to
fail due  to the rapid variation of the magnitude of  �   near the correct velocity,  as illustrated in
Fig. 2.3.  As a consquence, root finding becomes quite tedious.
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Figure 2.3:
The  real  and  imaginary  components  of  the  determinant  of  �  as  a  function  of  velocity  for
Θ � Π3 .  The only definite zero lies at V � 2770�ms�1 .

The velocities  where  the  determinant  of  �  vanish  correspond  to,  for  a  particular  direction  of
propagation Θ,  the allowed phase  velocities of the surface wave.   Once this has been determined,
only the amplitudes Ai,r  remain to be found to completely determine the form of the surface wave
as  described  by  Eqn.  2.8.   Subsituting  the  allowed  velocity  into  the  amplitude  ratios,  decay
constants  and  boundary  condition  matrix  gives  three  boundary  condition  equations  that  can  be
used to solve for these amplitudes.

The  homogenous  nature  of  these  equations  allows  only  for  solutions  of  two  amplitudes  in
terms  of  a  the  third.   By  dividing  through  by  one  of  these  amplitudes  and  setting  it  to  unity,  a
numerical form of each can be specified.  Again the choice of which amplitude to divide through
becomes  important,  as  in  particular  directions  some  amplitudes  are  zero.   Once  these  three
amplitudes are found, the amplitude ratios can be used to find the remaining six amplitudes.

2.2 Results and Discussion
Using the  method  just  outlined,  extensive  analysis  of  the  solutions  that  correspond  to surface

acoustic  modes  for  the  (001)  plane  of  Al0.3 �Ga0.7 �As  are  presented  in  the  following  section,
neglecting piezoelectric effects.  

Propagation  directions  in  single  degree  steps  between  and  including  [100]  and  [110]  are
considered, which covers all unique SAW solutions for cubic crystals in this plane.  These results
present  the  most  detailed  analysis of  surface  wave propagation  in Alx �Ga1�x As to date,  and  they
include discussions of:

-allowed velocities and decay constants for SAW modes on the (001) plane;
-the variation of displacement amplitudes;



-the appearance of leaky modes; and
-the degeneration of the SAW mode into a bulk transverse mode.

2.2.1 High symmetry directions

Propagation in the [100] direction

The  wave  equation  simplifies  for  high  symmetry  directions  of  propagation.   Such  directions
have  been  the  focus  of  extensive  research33,35  so  only  a  brief  discussion  will  be  included  here.
For a surface wave travelling in the [100] direction �Θ � 0 and k � kx �, the wave equation matrix
� looks like

� �

�
�
���������

c44 k2 � V2 Ρ � c11 0 k c12 � k c44

0 c44 k2 � V2 Ρ � c44 0

k c12 � k c44 0 c11 k2 � V2 Ρ � c44

�
	











Notice that in this case,  the second row of this matrix contains  only one component,  and thus
Ay � 0.  Displacements are confined to the sagittal plane and are of the form of a transverse �Az �
and a longitudinal �Ax � component.   The above matrix can be reformed as a 2�2 matrix �, such
that 

�.� Ax

Az
� � � 0

0
�

Setting the determinant  to zero will  lead to a quadratic equation  in Κ,  and the two roots in the
lower complex plane are chosen.  Each displacement will be a superposition of two terms, rather
than  three,  corresponding  to  the  two  roots  Κ2  and  Κ3 .   Further,  only  two  of  the  three  boundary
conditions  are  required  and  only one  amplitude  ratio  needs  to be defined  in order  to solve com-
pletely for the form of the surface wave.

The requirement  of  a  vanishing  determinant  of  the  boundary  condition  matrix  (only  a  2�2 in
this case) gave the allowed velocity of the surface wave in this direction to be 2830.6 ms�1 .  Fig.
2.4 shows the z-dependence of this Rayleigh wave solution, characterised by an oscillatory decay
into the bulk.
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Figure 2.4: The variation of transverse and longitudinal components of a Rayleigh wave propagating in
the [100] direction, as a function of depth (in wavelengths).  

A very similar solution exists for the propagation direction [010], where k � ky .  In this case,
the transverse component ux � 0, and the displacements are confined to the sagittal plane.

Propagation in the [110] direction

It  will  be  shown  in  section  2.2.3  that  in  the  [110]  direction  Κ1 � 0.   As  a  result,  the  general
method of  solving  for  surface  waves  solutions  outlined  in the first  section of this  chapter  breaks
down at Θ � 45�°.  The fact that Κ1 � 0 would correspond to a plane wave solution which would be
invariant  in z-direction,  and the same displacement  caused by this plane wave would exist  at the
surface  and  all  the  way  through  the  bulk.   This  solution  corresponds  to  a  bulk  elastic  wave.
Interestingly  enough  this  bulk  mode,  polarised  perpendicular  to  the  sagittal  plane,  satisfies  the
boundary conditions associated with a stress free surface.  Although in order to meet the condition
of a vanishing displacement  below the surface, an alteration to the method of solving for surface
waves propagating in the [110] direction is required.

Now that Κ1  is to be disregarded, all corresponding terms in the superposition involving Κ1  also
need to be disregarded - in the final form of the solution and in the boundary conditions.   In both
cases,  the  superposition  will  only  involve two terms,  and  one of the  consequences  of this  is that
the  boundary  condition  matrix  now  becomes a  2�2  matrix.   From the  first  two boundary  condi-
tions for the Θ � 45�° case:

c44����
2

Az,r � c44 Κr �Ax,r � 0



c44����
2

Az,r � c44 Κr �Ay,r � 0

It is obvious that Ax.r � Ay,r ; which physically represents a transverse mode of propagation.  In
the  boundary  condition  matrix,  the  first  column  corresponds  to  terms  involving  Κ1 ,  so  this  is
removed.  In order to be able to find the allowed velocity of the SAW for this propagation direc-
tion, the determinant must vanish - so the matrix needs to be square.  The first row is removed - as
this contains information on Ax,1  and Ax,2 , which, as shown above is equal to the Ay  components.
The boundary condition matrix will look like

� �
�
�
������

c44�����
2
� �2 Κ2 c44

c44�����
2
� �3 Κ3 c44

c12�����
2
���2 � �2 � � c11 Κ2

c12�����
2
���3 � �3 � � c11 Κ3

�
	








The  corresponding  allowed  velocity  was  found  to  be  2980.4�ms�1 ,  which  is  the  theoretically
accepted velocity  in the [110] direction of Al0.3 �Ga0.7 �As, as discussed  later in this chapter.  This
fact verifies that the assumption to alter the boundary condition matrix as above was correct.

Surface acoustic waves travelling in this direction have two transverse modes - one parallel to
the  surface  where  ux � uy ,  and  the  other  perpendicular,  uz .   The  decay  constants  are
Κ � �0.483 � 0.498��,  and  both  will  contribute  to  an  oscillatory  variation  of  these  displacements
beneath the free surface, as shown in Fig. 2.5.
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Figure 2.5: The  variation  of  the  two  transverse  components  of  the  Rayleigh  wave  propagating  in  the
[110] direction, as a function of depth (in wavelengths).



2.2.2 Allowed Velocities
The  anisotropic  nature  of  Al0.3 �Ga0.7 �As  leads  to  a  dependence  of  the  phase  velocity  on  the

direction  of  propagation.   The  condition  of  a  vanishing  boundary  condition  matrix  determinant
was satisfied for Θ ranging between 0 and 45�° in one degree steps, which occurred at the allowed
velocities  in  those  directions.   The following  figure,  Fig.  2.6,  shows  these  allowed velocities,  as
well  a  set  of  bulk  and  and  so  called  pseudo-surface  or  'leaky'  wave  velocities,  as  a  function  of
propagation direction.   These pseudo-surface  modes are characterised by a decay in the direction
of propagation as well as the radiating of energy away from the surface, and will be discussed in
section 2.2.4.
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Figure 2.6: Surface, bulk and leaky wave velocities of as a function of propagation direction.

As  seen  in  the  figure  at  a  value  of  around  Θ�30�°,  the  SAW  merges  into  a  bulk  wave  -  a
transverse  mode  polarised  in  the  sagittal  plane,  although  surface  wave  solutions  still  exist  along
this  branch  up  until  Θ � 45�°.   Notice  that  at  around  Θ�25�°  a  new  kind  of  vibration  appears
associated to a pseudo-surface wave, which will be discussed in more detail later.  These pseudo-
surface waves,  also known as 'leaky' surface waves,  are characterised  by a decay in the propaga-
tion direction  as  well  as  into  the  bulk.    As the direction  of  propagation  reaches  45°  -  the  [110]
direction,  the  leaky  surface  mode  becomes  a  real  surface  wave,  with  a  phase  velocity  of
2980.4�ms�1 .

A number38�40  of  theoretical  studies  of  SAW  propagation  in  these  high  symmetry  directions
for Alx �Ga1�x �As have been made - although any theoretical treatment of SAW propagation in the
(001)  plane  of  cubic  crystals,  for  which  there  are  many,5,7,11,33  with  the  elastic  constants  of



Alx �Ga1�x �As  used  could  be  used  for  comparison.    Adachi40  gives  explicit  formulae  for  the
velocities in terms of the elastic constants:

c11 � V2 �
c44
Ρ

������� V2 �
c11
Ρ
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c11 Ρ
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2�c44 � c12 � c11

2�Ρ
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c12
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2

�

c44 �V4 �V2 �
2�c44 � c12 � c11

2�Ρ
�

for the  [100] and [110] propagation  direction,  respectively.   Using  the same elastic  constants,
these equations yield the precise velocities (to 7 significant figures) as those calculated here.

Another  interesting  representation  of  the  calculated  SAW  velocities  is  shown  in  Fig.  2.7  -  a
polar plot for all angles from 0 to 2Π, for the general surface wave branch depicted in the previous
figure.
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Figure 2.7: Polar plot of the surface wave velocities for all propagation directions on the (001) plane.

There  is  limited  experimental  data  for  surface  wave  velocities  on  Alx �Ga1�x �As.   Sapriel36

made measurements  using Brillouin scattering techniques, for a range of doping densities x in the
high  symmetry  directions,  [100]  and  [110].   Whilst  no  measurements  were  made  for  x � 0.3,  a
highly  correlated  linear  relationship  between  measured  velocities  and  concentration  x  was  pro-
duced,  giving velocities  of 2777�ms�1 and 2911.5�ms�1  for the  [100] and [110] directions  respec-



tively.   This  corresponds  to  a  1.8%  and  2.3%  difference  in  the  calculated  results  above  of
2830.6�ms�1  and  2980.4�ms�1 .    Although  these  results  do  not  include  piezoelectric  effects,  it  is
shown  later  in  chapter  three  that  there  is  only  very  small  variation  in  SAW  velocities,  at  most
0.1%,  when  piezoelectricity  is  considered.   A  more  recent  study37  using  a  standard  split-finger
interdigitated  transducer  yielded  a  velocity  in  the  [110]  direction  as  2968.5�ms�1 ,  corresponding
to an error of only 0.4%.

Discrepancies between these measured and calculated velocities may be attributed to a number
of  factors.   Although  the  assumption  of  a  linear  relationship  between  concentration  x  and  the
elastic constants, which was used here, is widely accepted,37�41  their is some argument36  that the
elastic  constants  may undergo a "softening" for  increasing  values of x  in the  Alx �Ga1�x �As alloy,
where for higher values of x a linear approximation is not valid.

2.2.3 Decay Constants
The very  definition  of  surface  waves,   whether  they be electromagnetic,  elastic,  or  otherwise,

describe a mode of propagation of energy along a free surface whereby the amplitude of the wave
undergoes  exponential  decay  below  this  surface.   Therefore  it  is  common  to  talk  of  a  constant
which quantifies this decay, namely the decay constant.

The method  of  solving  for  the  surface  modes  outlined  at  the  start  of  the  chapter  yields  three
decay  constants  Κ1 , Κ2 and Κ3 ,  the  three  lower-half  complex  plane  roots  of  the  secular  equation
(Eqn.  2.6).   Each  represent  the  z-component  of  the  wavevector  of  each  of  the  plane  wave  solu-
tions contributing to final surface wave solution, a superposition of these three waves.

Solving  the  surface  wave  problem  for  an  isotropic  media  leads  to  purely  imaginary  decay
constants - and thus purely exponential decay into the bulk of the material.  In the case of anisotro-
pic media, some if not all of the decay constants attain both a real and imaginary component.  The
consequence  of this are surface waves that exhibit  sinusoidal decay into the bulk, and are known
as Rayleigh waves.

As mentioned previously, these decay constants depend upon the allowed velocity of the SAW
- which acts as parameter in the explicit form of each Κr , and is determined from the condition of
a  vanishing  boundary  condition  determinant.   Plots  of  each  Κr  as  a  function  of  velocity  for  the
case Θ � Π3  can be seen in Fig. 2.8.



10002000300040005000
Velocity �ms�1 �

�0.6
�0.4
�0.2

Κ1

10002000300040005000
Velocity �ms�1 �

�0.5

0.5
1

Κ2

10002000300040005000
Velocity �ms�1 �

�1.4
�1.2
�1

�0.8
�0.6
�0.4
�0.2

Κ3

Imaginary
Componen

Real
Componen

Figure 2.8: The three decay constants, Κ1 , Κ2 and Κ3  as a function of velocity for Θ � Π3 .

Consider the plot of Κ1 .  Notice that for 0 � V � 2780�ms�1  the decay constant  remains purely
imaginary, and thus the first component of the superposition will not involve an oscillatory decay
into  the  bulk,  but  rather  just  a  purely  exponential  one  -  much  alike to the decay  expected in the
isotropic  case.   It  then  changes  from  purely  imaginary  to  purely  real  over  the  range
2780 � V � 3484�ms�1 .  If the allowed velocity happened to be within this range, the correspond-
ing component of the solution would not decay away from the surface, and would not be consid-
ered  a  surface  wave  -  but  rather  a  bulk  wave.   The  plots  of  Κ2  and  Κ3  show  the  complex  form
which typify Rayleigh wave solutions.  The real components are identical but with opposite signs
for Κ2  and Κ3  - and are responsible  for  the oscillatory  nature of the decay.  There exists a cut-off
velocity at which there ceases to be surface wave solutions - that is, the decay constant ceases  to
have a negative imaginary component.  It happens to correspond to the velocity of one of the bulk
transverse waves, which remains invariant regardless of the propagation direction:

Vcutoff � �����������c44
Ρ

� 3484.5�ms�1

For all  directions of propagation  over the (001) plane of Al0.3 �Ga0.7 �As, the allowed velocities
are  less  than  this  bulk  transverse  wave  velocity,  and  thus  correspond  to  surface  wave  solutions.



The  three  plots  of  Fig.  2.9  show  the  values  of  the  decay  constant  for  a  range  of  propagation
directions.
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Figure 2.9: Values for each decay constant for different directions of propagation

For Κ2 and Κ3 ,  a  variation  of  no  more  than  0.25  in the  real  and  imaginary  components  occurs
over  the  range  of  propagation  directions.   For  these  two  decay  constants,  fastest  decay  of  their
corresponding plane wave components will occur at Θ � Π4 , where the magnitude of the imaginary
component is the largest, and slowest decay at Θ � 0, Π2 .   The first decay constant, Κ1  shows some
interesting  behaviour  as  the  propagation  direction  approaches  Θ � 45�°.   The  real  component  is
zero  for  all  propagation  directions,  and  as  Θ  approaches  45°  it  moves  closer  and  closer  to  the
origin  of  the  complex  plane,  giving  ever  deeper  penetration  to  the  displacement.   In  the  [110]
direction (ie Θ � 45�°), Κ1 � 0, and the solution has degenerated completely into the bulk wave.

A possible  quantification  of  the  decay  into  the  bulk  can  be  made  by  using  an  analogy  to  the
'skin-depth',  ∆,  of electromagnetic  theory, a depth at which the amplitude of the EM wave travel-
ling in a dielectric media decays to 1�  of its original value.  The complex nature of the amplitudes
and  decay constants  makes  it  difficult  to establish  a  value for  each skin  depth for  the superposi-
tion  solution  -  and  only  approximate  results  can  be  produced  based  upon  numerical  solutions.
Instead, the imaginary parts of each of the decay constants are considered separately, where



∆r � �
1


2�Π Im�Κr �

This gives a very basic representation of the decay length for each component, which is seen in
Fig. 2.10
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Figure 2.10: The relative variation of decay depth (in  wavelengths)  for  each component  of the surface
wave solution for different propagation directions.

Although  this  doesn't  give  an  entirely  correct  representation  of  the  decay  length  of  the  com-
plete surface wave solution, it does provide some information on the relative effect of each decay
constant as the propagation direction changes.  As the propagation direction tends toward 45°, Κ1

decreases  to  zero  the  corresponding  decay  length,  ∆1 ,  diverges  to  infinity  -  whilst  ∆2  and  ∆3 ,
which are equal, remain finite - varying by only 0.15 wavelengths over this range.

A better representation of the effect of each of the decay constants can be provided by weight-
ing coefficients that represent the contribution from each term in the SAW solution, which can be
defined as

Αr � �Ax,r � Ay,r � Az,r �
These weighting  coefficients,  suitably  normalised,  are  depicted in Fig.  2.11  They  provide  an

explaination  of the  degeneration  of the  surface  mode into a  bulk mode  as the propagation  direc-
tion  approaches  [110],  shown  in  Fig.  2.6.   The weighting  coefficient  Α1  that  corresponds  to  the
first  decay constant  Κ1  gives  no contribution to the final solution at [100],  which  is verified  later
in  the  chapter.   Both  Α2  and  Α3  give  equal  contributions  to  the  solution  for  all  directions  of
propagation; the largest for [100], and nothing at [110].  The contribution Α1  becomes larger as Θ
increases,  when  at  45° the  other contributions  to the solution,  Α2  and Α3 ,  vanish completely.   In
this high symmetry  direction the superposition  breaks down entirely to a single component,  now



only depending upon the first decay constant, Κ1 .  As was shown earlier, the imaginary part of Κ1

vanishes  in  the [110]  direction  -  and  thus  the  solution  ceases to satisfy  the  condition  for  surface
waves - that it exhibits exponential decays away from the free surface into the bulk.  The solution
has become a transverse bulk wave, polarised in the plane perpendicular to the sagittal plane, with
phase  velocity  of  2569.9�ms�1 -  lower  than  all  surface  wave  solutions  on  the  (001)  plane  of
Al0.3 �Ga0.7 �As.
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Figure 2.11:
Weighting coefficients associated with each term of the final SAW solution, as a function
of propagation direction.

2.2.4 Leaky Surface Waves
The surface  wave solution  found the [110] direction  is quite unique in the fact  that it  is quite

isolated  from other surface  wave solutions  on the (001) plane and it is the only surface wave on
this plane with a phase velocity higher than the lowest bulk wave velocity.  This only occurs in a
very limited set of directions for particular anisotropic surfaces.  The branch of velocities depicted
in  Fig.  2.6  do  not  correspond  to  real  surface  acoustic  waves  -  but  rather  solutions  known  as
'pseudo-surface'  or 'leaky' waves.   These velocities only correspond to very approximate zeros of
the  determinant  -  while the  real component  was zero for  this  velocity,  the imaginary  component
remains very small but non zero - on the order of 10�3 � 10�6 .  A good example is the plot of the
boundary condition  matrix  for Θ � 30�°,  Fig.  2.3.   As a consequence  they will  not  exactly  satisfy
the stress free boundary conditions.  Fig. 2.12 gives a table of the absolute values of the determi-
nant evaluated at the approximate velocities of the leaky surface waves.



25�° 3.6 � 10�3

26�° 2.5 � 10�3

27�° 1.7 � 10�3

28�° 1.0 � 10�3

29�° 5.8 � 10�4

30�° 2.7 � 10�4

31�° 9.8 � 10�6

32�° 1.6 � 10�5

33�° 1.1 � 10�6

34�° 2.7 � 10�5

35�° 7.2 � 10�5

36�° 1.2 � 10�4

37�° 1.5 � 10�4

38�° 1.7 � 10�4

39�° 1.6 � 10�4

40�° 1.4 � 10�4

41�° 1.0 � 10�4

42�° 6.7 � 10�5

43�° 3.3 � 10�6

44�° 8.6 � 10�6

Figure 2.12:
Absolute  values  of  the  boundary  condition  determinant  evaluated  at  the  approximate
allowed velocities of the leaky waves, which appear between in propagation directions 25°
and 44°.

If  the  components  of  the  wave  vector  k  are  allowed  to  have  small  imaginary  components,
corresponding  to  an  attenuation  in  the  direction  of  propagation,  then  the  associated  allowed
velocities  would give solutions that would completely satisfy the stress free boundary conditions.
For  the  isolated  direction  itself,  the  Rayleigh  type  solution  has  two  associated  complex  decay
constants, whereas for angles near this direction the solutions involve a small third term represent-
ing a quasi-transverse  bulk wave with its propagation  vector in the sagittal  plane but tilted down
into  the  solid.   Therefore  this  wave does  not  satisfy  the  condition  that  the  displacement  compo-
nents  vanish  at an infinite  depth below the  surface.   Although  the  imaginary  component  is quite
small for angles  close to the isolate direction - and so decay is quite slow, and thus experimental
conditions  for  surfaces  waves  are easily observeable.   As the propagation  vector deviates  further
from this  direction  coupling  between  the bulk  mode  becomes  much stronger,  and  the amount  of
energy  radiated  away from the surface  increases  dramatically.   So,   although the  obey the stress
free  boundary  conditions,  they are  strictly not  surface  waves  and  the term 'leaky'  surface  waves,
borrowed from electromagnetic  theory,  is appropriate  - reflected the slow leak of energy into the
bulk.   Special  consideration  must  be  given  to  these  solutions  when  considering  surface  wave
propagation in the [110] direction of the (001) plane of cubic crystals. 

2.2.5 Amplitude Profiles
Another important aspect of the surface wave is the actual amplitudes of displacement, and the

associated  polarisation  of  such  displacements  as  the  direction  of  propagation  changes.   Figure
2.13  shows  these  relative  amplitudes  as  measured  along  the  cartesian  axes,  for  a  variety  of
different depths beneath the surface.

In terms of acoustic charge transport phenomena, it is important to understand the nature of the
these  elastic  polarisations,  which  in  turn  produce  the  piezoelectric  fields.   These  fields  and  the
associated potential are discussed in chapter three.
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Figure 2.13:
Relative  displacement  amplitudes  as  measured  along  the  cartesian  axes,  as  a  function  of
propagation direction for different depths beneath the surface.

Notice at all depths in the x-direction, the y-component of displacement is absent - and displace-
ments  are  confined  to  the  sagittal  plane  with  a  transverse  z-component  and  longitudinal  x-
component,  as was shown previously.  The purely transverse mode of propagation can be seen in
the  y-direction,  at  45°;  where  ux � �uy .   The  in  this  case,  z-component  is  absent  and  displace-
ments  are confined parallel  to the surface.   Surface modes degenerate  into this bulk mode as the
direction of propagation Θ increases - notice at a depth of 5 wavelengths where all displacements
between   0°  and  ~27°  have  vanished,  this  mode,  which  satisfies  the  stress  free  boundary  condi-
tions shows no signs of attenuation.   The oscillatory decay associated with Raleigh solutions can
also be seen in Fig. 2.13 � notice that for different depths the sign of particular amplitude compo-
nents change.

Fig.  2.14  shows  the  amplitudes  as  contributions  to  the  surface  displacement  in  terms  of  two
transverse  and  one  longitudinal  component  for  the  general  surface wave branch,  and that  part of
the  leaky  wave branch  nearby  [110].    The longitudinal  component, UL ,  is  surface  displacement
measured  along  the  wavevector  k�� ,  the  vertical  transverse  component,  UV ,  corresponds  to  the
displacement  perpendicular  to  the surface,  and  the  other  transverse  component,  UT ,  is measured
perpendicular to the sagittal plane, or a vector defined as k� .  In terms of the cartesian amplitudes
Ax , Ay and Az , these are expressed as



UL �
k � �Ax , Ay �
 k  UV � Az UT �

k� � �Ax , Ay �
 k� 

As the weighting coefficients  indicated  that the contributions  of the second and third terms in
the  final  surface  wave  solution  were  equivalent,  the  sum  of  these  components  are  presented  in
Fig. 2.14 along with the first term contribution of each of the surface displacements.
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Figure 2.14:
Normalised surface displacement components corresponding to each Κr : 
UT .r :  Transverse  components  parallel  to  the  sagittal  plane;  UV ,r :  Transverse  components
perpendicular to the surface; and UL,r : Longitudinal component parallel to k
As expected,  the  only  contribution  to  the  surface  displacement  at  45°  is  the  first  term  of  the

transverse  component  -  the  bulk  mode.   Likewise  for  0°,  where  only  vertical  and  longitudinal
displacements exist.  The longitudinal and vertical components dominate the solution up until the
surface wave begins to degenerate into the bulk wave.  The polarisation of the leaky surface wave
involves a vertical  and longitudinal component  - and a small  transverse component,  which is not
shown on the figure.



Chapter Three: Piezoelectric Surface Acoustic 
Waves

The piezoelectric effects of Al0.3 �Ga0.7 As are sufficiently small such that it could be neglected
in  the  formulation  of  the  surface  wave  problem.   Although,  as  interest  lies  in  the  associated
potential  that  accompanies  the  surface  waves  on  this  piezoelectric  material,  such  effects  are
included. 

The method of finding surface wave solutions for the piezoelectric  case is very similar  to that
used  for  non-piezoelectric  elastic  waves,  which  was  outlined  in  chapter  two.   The  addition  of
piezoelectricity  complicates  further  the  solution  of  surface  waves  by  increasing  to  four  the
number  of  partial  waves,  by  introducing  terms  containing  the  potential  into  the  zero-stress
boundary  condition,  and  by  requiring  consideration  of  the  electric  boundary  conditions  at  the
surface.

This chapter  discusses these SAW solutions,  and how they compare to the non � piezoelectric
surface  wave  results.   Discussion  of  the  piezoelectric  fields  and  potential  associated  with  the
SAW is also included,  with an emphasis on how they vary with direction and distance below the
surface.  As will be seen in chapter four, the importance of the direction of propagation and depth
of the 2DEG is paramount when considering acoustic charge transport phenomena.

3.1 Theory and Method
The  method  used  to  solve  for  piezoelectric  surface  acoustic  waves  is  very  similar  to  the

method  used  in  chapter  two.   A  complete  discussion  can  be  found  in  appendix  A4,  and  only  a
summary is presented here.

The wave equations that govern piezoelectric surface acoustic waves are
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These equations are formulated into a 4�4 matrix, and the condition of a vanishing determinant
is used to find the four decay constants.  As a result, surface wave solutions are the superposition
of four plane wave solutions, each satisfying the boundary conditions associated with a piezoelec-
tric surface.

In  addition  to  the  stress-free  boundary  conditions,  piezoelectricity  introduces  an  electric
boundary condition.  This requires the continuity of the normal component of the electric displace-
ment over the surface, which is expressed as:

e14
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� Εo �k �Φ � 0 at z � 0

This boundary condition, in addition to the three stress free equations are combined into a 4�4
boundary  condition  matrix.   The  velocities  that  see  the  determinant  of  this  matrix  vanish  corre-
spond to the allowed velocities of the piezoelectric SAW.

3.2 Results and Discussion
The alloy Alx �Ga1�x �As is weakly piezoelectric.  Its electromechanical coupling constant is one-

sixteenth  of  LiNbO3 ,  and  half  of  that  for  quartz.   As  a  result,  the  introduction  of  piezoelectric
terms in the wave equation and boundary conditions have a very little effect on the elastic proper-
ties  of  surface  acoustic  waves.   Despite  the  relative  low  coupling,  the  piezoelectric  fields  and
potential associated with these elastic waves are significant.  It is this reason that acoustic charge
transport occurs, so a thorough understanding of these quantities is important.

Previous  research  for  SAW  propagation  in  arbitrary  directions  for  piezoelectric  crystals35,45  concentrate
on features  for certain elastic experiments  and device applications.   Literature searches failed to recover any
publications  regarding  features  important  for  acoustic  charge  transport,  particularly  in  AlGaAs.   This  new
research  is  based  on  calculations  made  for  the  same  orientation  and  range  of  propagation  directions  in
chapter two, and includes:

-analysis of the four decay constants to explain SAW properties;
-the variation of the piezoelectric fields for different depths; and
-profiles of the electric potential



3.2.1 High symmetry directions

Propagation in the [100] direction

Surface acoustic  wave propagation  on the (001) plane of piezoelectric  cubic crystals has been
extensively  studied  in  the  high  symmetry  directions11,12,33 .   For  propagation  along  the  [100]
direction, the wave equation matrix defined in Eqn. 0.36 becomes:
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Notice now there are two possible modes.  One is a non-piezoelectric  two component Raleigh

wave with components polarised in the sagittal plane:
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And  the  other  a  single  component  piezoelectric  surface  wave  polarised  orthogonal  to  the
sagittal plane, coupled to an electric field.
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The  associated  boundary  conditions  also  separate  accordingly.   The  two  component  Raleigh
wave is simply the SAW solved for the non-piezoelectric case in the [100] direction, Fig. 2.4  The
second  set  of  equations  correspond  to  a  surface  wave  solution  known  as  a  Bleustein-Gulyaev
wave.   Although  for  this  plane  of  propagation,  no  zeros  of  the  associated  boundary  condition
matrix  were  found  -  so  no  solution  exists  in  this  direction.   Bleustein-Gulyaev  waves  are  found
only to exist35  along the [11

��
0] direction in the (110) plane of cubic crystals.

From  a  crystallographic  point  of  view,  the  surface  wave  propagating  in  the  [100]  direction
induces strains in the [100] (longitudinal)   and [001] (transverse) directions.   Neither of these are
polar directions in the zinc-blende structure, and thus do set up polarisations with the crystal.



Propagation in the [110] direction

Many  experiments  investigating  acoustic  charge  transport  involve  SAW  propagation  in  the
[110] direction of the (001) plane piezoelectric cubic crystals, or equivalent directions.  In section
4.2.3  this  direction  is  studied  in  greater  detail,  and  it  is  shown that  surface  wave  propagation  in
this  direction  has  the  highest  associated  electromechanical  coupling  and  largest  piezoelectric
potential.

Solving the piezoelectric wave equation in this direction yields a solution whose displacements
are polarised in the sagittal plane - a longitudinal component and a transverse vertical component.
This is known as a two component Raleigh wave, and is identical to the solution found in chapter
two � except with a phase velocity of 2983.6�ms�1 , 0.11% higher than the uncoupled case.

3.2.2 Allowed Velocities and Decay Constants
As  a  result  of  such  weak  coupling,  the  surface  wave  velocities  differ  only  slightly  when

piezoelectric effects are included.  Fig. 3.1 shows the difference between the calculated velocities.
For  the  surface  wave  branch,  the  largest  difference  in  velocities  occurs  at  around  Θ�24�°,  just
below 2�ms�1 ,  which  corresponds  to  a 0.06% change.   This  is an argument  that  this  direction of
propagation  has  associated  with  it  the  highest  electromechanical  coupling  for  the  branch  of
surface waves that degenerate into bulk modes, which is verified  in section 3.2.3.  The velocities
for the leaky surface modes were also calculated, and were found to differ from the non piezoelec-
tric leaky waves by no more than 0.1%.  Although the coupling was not investigated for the leaky
modes, the difference in velocity reflects a relatively high coupling strength.
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Figure 3.1: The difference in calculated SAW velocities when piezoelectric coupling is considered.



As  mentioned  in  section  A.4.4,  the  introduction  of  an  additional  term  in  the  wave  equation
leads to an eighth order secular equation, and thus four decay constants.  Three of these four roots
are  essential  the  same  to  the  roots  defined  in  chapter  three.   The  additional  decay  constant,
defined as the first, Κ1 , is purely imaginary over all propagation directions.  It is the least varying
of all the roots,  as can be seen in Fig.  3.2.  The nature of this root is much alike those found for
isotropic substrates - purely imaginary and constant over all directions, which reflects the strength
of  the  piezoelectric  coupling.   As  the  magnitude  of  piezoelectric  constant  e14  is  increased,  the
variation in  Κ1  increases.   Another  interesting  aspect  of  this root  is its  relative  magnitude.   Con-
sider  the  values  of  the  decay  constants  for  Θ � 15�°:  Κ1 � �1.015��,  Κ2 � �0.463��,  and
Κ3,4 � �0.532 � 0.408��.  The new root has the largest imaginary component,  and for propagation
in  this  direction,  a  corresponding  'skin  depth'  of  0.16  wavelengths.   This  contribution  to  the
solution is highly localised at the surface and exhibits  the fastest rate of decay into the bulk, and
as it turns out - is the smallest contributing term in the solution.  At the surface this term contrib-
utes at most 2% of the total  displacement,  further confirming the very weak effect piezocoupling
effects of Al0.3 �Ga0.7 As.

20 40 60 80
Θ

�1.018

�1.016

�1.014

�1.012

�1.01
Κ1

Figure 3.2:
The  purely  imaginary  additional  decay  constant  associated  with  the  piezoelectric  SAW
solutions, for different directions of propagation.



3.2.3 Piezoelectric fields and potential

Electromechanical coupling

Traditionally  the  strength  of  piezoelectric  coupling  is  quantified  by  the  electromechanical

coupling constant,  K.   For bulk waves, K2

2  is an explicitly calculable factor  containing the terms
eijk

2

cijkl Εij
,  which  also  defines  the  fractional  increase  in  the  velocity  produced  by  piezoelectricity.

However,  for  surface  waves,  because  of  their  inhomogeneity  in  the  direction  normal  to  the
surface,  there  is  no  corresponding  explicit  electromechanical  coupling  factor.   It  is  nevertheless
important to have a single parameter to express this coupling:  one that is useful for device analy-
sis  and  is  easily  measurable  and  calculable.   In  analogy  with  the  bulk  wave  case,  an  effective
electromechanical  coupling  factor  is  defined  as  twice  the  fractional  change  in  surface  wave
velocity  produced  by  electrically  shorting  the  mechanically  free  surface  of  the  piezoelectric
substrate35 :

(3.1)
K2


2

�
V � Vs


V

where V  is the surface wave velocity with the free surface and Vs  with it shorted.  Calculation
of  SAW  velocities  with  an  electrically  shorted  surface  requires  a  manipulation  of  the  electrical
boundary conditions such that the sum of the terms in the potential is zero at the surface.  In terms
of  the  boundary  condition  matrix  (Eqn.  3.20),  the  fourth  row  is  replaced  by  b4�r � 1.   Fig.  3.3
shows the relative variation in the electromechanical coupling constant as a function of direction.
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Figure 3.3:
Normalised values of the electromechanical  coupling constant for the surface wave branch,
as a function of direction.

Notice  that  the  highest  value  of  K  for  the  surface  wave  branch  occurs  at  Θ�25�°.   Unfortu-
nately, due to the gradual degeneration of the SAW into a transverse bulk mode for directions past



Θ�30�°,  values  for  K  shown  in  Fig.  3.3  do  not  reflect  the  strength  of  the  coupling  for  larger
angles.   In  effect,  the  transverse  bulk  elastic  displacements  that  dominate  at  these  angles  are
perpendicular to the polar direction [111], and there is no corresponding piezoelectric field.

Variation of Electric potential 

Two main aspects  of the potential associated with a propagating SAW has been investigated  -
how it varies with propagation direction, and with depth.  There are four amplitudes contributing
to the potential,  each  corresponding to one of the four decay constants.  It is these terms, defined
in Eqn. 0.38, that governs the electric potential's  behaviour.   All potentials have been normalised
to the value at a depth of 0.1 wavelengths for Θ �33°.

The piezoelectric  potential  shows some very interesting  behaviour over  the range of propaga-
tion  directions.   Fig.  3.4  shows  the  total  potential  for  five  different  depths,  as  a  function  of
direction.  As discussed previously, the [100] direction exhibits no piezoelectric properties and the
potential at all depths is zero.  As the angle from [100] is increased, the elastic displacements (as
discussed in section 2.2.5) induce strain components in the polar direction [111].  The correspond-
ing potential that results from the induced electric fields is approximately the same for all depths,
although when the angle reaches around 21°, these potentials diverge suddenly from one another.
Those  closer  to  the  surface  increase  up  to  twice  their  value  over  the  span  of  only  10°,  whilst
depths  below  a  quarter  of  a  wavelength  decrease  in  value.   The  potential  close  to  the  surface
peaks  in  the  propagation  direction  ~33°  from  the  x-axis,  and  drops  to  zero  as  quickly  as  it
increased.   The potential  is zero for  the bulk wave solution  at [110],  for  all depths  - as expected
based on arguments discussed in the previous section..
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Figure 3.4: Normalised piezoelectric potential as a function of direction for different depths. 

To understand the unusual variation of this potential over different directions it is important to
consider  each  of  the  components  that  contributes  to  the  total  potential.   The  four  terms,  each
corresponding  to  one  of  the  four  decay  constants,  are  depicted  as  a  function  of  propagation



direction in Fig. 3.5 for three different depths.  The most significant contribution comes from the
first  term,  which  corresponds  to  the  additional  decay  constant  Κ1  that  was  included  in  the  SAW
solutions.   This term contributes  the  least  to the elastic  displacements.   The second  term,  whose
associated decay constant is identified with the bulk mode, is effectively zero for angles Θ � 40�°,
further  indicating  the  zero  coupling  associated  the  bulk  mode.   The  variation  in  the  third  and
fourth  components  reflect  the  complex  decay  constants  Κ3  and  Κ4 .   As  the  depth  increases,  the
third  component  gives  a  greater  relative  contribution  to  the  final  potential.   Akin  to  the  elastic
displacements,  oscillatory  decay  of  the  potential  also  occurs,  which  is  an  explanation  for  the
significant variation over the range of different depths.  
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Figure 3.5: The  relative  values  of  the  each  component  contributing  to  the  potential,  as  a  function  of
direction, for three different depths: (a) z � 0, (b) z � 0.1�Λ; and (c) z � 0.2�Λ

The  variation  as  a  function  of  depth  is  shown  in  Fig.  3.6,  for  four  different  directions.   The
most striking characteristic of these plots is the form at small depths for Θ � 10�° and 20°, which is
a direct  consequence of  the complex decay  constants.   A local  minima is  evident  at around  0.15
wavelengths  below  the  surface  -  and  this  potential  well  structure  has  a  significant  physical
consequence in acoustic charge transport, which will be discussed in section 4.2.  As the direction
of  propagation  goes  from  20�° � 30�°,  the  contribution  near  the  surface  of  the  third  and  fourth
terms begins to diminish,  this minima vanishes,  and the decay of the potential attains a common
exponential  form.  The plot  for  Θ � 30�° demonstrates  the slow decay associated  with the second



term.   As  mentioned  previously,  its  amplitude  decreases  and  the  decay  length  increases  as  it
approaches  the  [110]  direction � evident  in  the  fourth  plot,  Θ � 45�°.   Here  the  decay  is  almost
purely  exponential  -  due  to  the  heavy  weighting  of  the  first  term  which  has  a  imaginary  decay
constant, although for z �� Λ  the potential is very small but remains non-zero.
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Figure 3.6: Plots of the potential as a function of depth.

Piezoelectric fields

The piezoelectric fields associated with the travelling SAW can be directly calculated from the
potential:

E � �"Φ
The electric  potential  has  a  wave-like dependence,  and  alike the elastic  displacements,  planes

of constant  phase  are perpendicular  to the  sagittal  plane.   As a result,  regardless  of the  propaga-
tion  direction,  there  is  no  transverse  component  of  electric  field.   The  fields  at  a  depth  z � zo

measured in the two frames of reference are:



(3.2)

Ex � �� k �Cos�Θ��Φ�zo � Ey � �� k �Sin�Θ��Φ�zo � Ez � �� k �Κr �Φ�zo �
EL �

k � �Ex , Ey �
 k  �

�� k �Φ�zo � ET �
k� � �Ex , Ey �
 k�  � 0 EV � �� k �Κr �Φ�zo �

Figure  3.7  shows  the  longitudinal  and  vertical  components  of  the  SAW,  as  a  function  of
direction, for a number of different depths.  The local potential minima in the potential profiles in
the  z �direction  discussed  previously  manifests  regions  of  zero  vertical  electric  field,  which  is
evident in Fig. 3.7(a).   As the form of the potential  changes (Fig 3.6),  so does the corresponding
vertical  electric  field,  whose  value  is  highly  dependent  upon  the  depth  below  the  surface.   The
longitudinal  component is better behaved and Eqns. 3.2 indicate  it is quite similar  to the form of
the potential, shown in Fig. 3.4.
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Figure 3.7:
The  relative  Piezoelectric  vertical  (a)  and  longitudinal  (b)  fields  as  a  function  of  propaga-
tion direction, for different depths (in wavelengths).



Chapter Four: Acoustic Charge Transport

The following chapter includes an overview of the current theory of acoustic charge transport,
as  well  as  the  discussion  of  a  number  of  experiments  conducted  that  give evidence  for  possible
device applications.   Now that all the characteristics  of SAW propagation have been determined,
it is important to consider some aspects relevant to acoustic charge transport.  These include:
-phonon focusing effects on the (001) plane of AlGaAs;
-propagation directions best suited to ACT experiments;
-the location of the two-dimensional electron gas relative to the surface; and
-electron energy levels.

4.1 Phonon Focusing
Focusing  phenomena  of  both  bulk46,47  and  surface48�50  phonons  in  anisotropic  material  has

long been a topic of interest in condensed matter  physics.  This focusing of energy is not unique
to the elastic regime - other elementary excitations,  for example magnons or polaritons also have
been shown51  to display this effect.  Focusing occurs in directions around selected pure modes of
elastic propagation, which can be found by examining the angle between the Poynting vector and
wavevector, or more graphically by considering a slowness surface.

4.1.1 Energy Flow

As  for  electromagnetic  theory,  energy  transport  in  an  elastic  medium  can  be  described  by  a
Poynting  vector.   In  the  case  of  Alx �Ga1�x �As,  whose  piezoelectric  coupling  is  very  small,  the
associated electrical energy is negligible, so it can be neglected.  In this case, the poynting vector
components are defined as33 :

Pi � �Tik �
�ui

� t

� �� Ω Tik �ui

The direction of the poynting vector describes the direction of energy transport, and its magni-
tude is equal to the amount of energy traversing a unit area per unit time.  For pure surface wave
modes  there  is  no  energy  dissipation  into  the  bulk  and  energy  always  travels  parallel  to  the
surface, and it is useful to define a power flow vector, which is 

Wi � �
1

2
��

�∞

0

Pi �$ z



where W  represents  the time averaged  power crossing  a strip of unit  width  and infinite depth
oriented perpendicular to the vector.  Analysis of the direction of power flow shows that only in a
very few select directions it is colinear to the propagation vector.  For computational purposes, the
power flow, in terms of the surface wave displacements, is given by35

Wi � �
1

2
�Re��

n�1

3 �
m�1

3 Ω Ak,n �Aj,m
% �cijkl � cijk3 �Κn �


� �Κn � Κm

% � �
Surface  waves  do  not  radiate  energy  into the  bulk, and  Wz � 0,  as  expected.   Examination  of

focusing  effects  can  be  made  by  comparing  the  angle  between  the  propagation  direction  k��  and
the power flow vector W.  Fig. 4.1 shows this angle, Β, as a function of direction.
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Figure 4.1:
Angle  (in  degrees)  between  power  flow  vector  W  and  k��  for  the  range  of  propagation
directions between  [100] and [010].

As expected, the high symmetry directions, [100],  [110] and [010] are all pure modes.  Notice
propagation  &  energy  flow  are  also  colinear  at  Θ � 22.5�°  and  Θ � 67.5�°.   At  Θ � 30�°, 60�°  the
group  velocity  is  at  an  angle  of  ~25°  from  the  phase  velocity  -  the  largest  deviation  between
energy flow and propagation direction.

4.1.2 Slowness surface
Slowness surfaces provide qualitive information on focusing effects.  The slowness surface is a

polar  plot  of constant  frequency  -  the locus  of the  ends  of  the vectors  L � k��V .   Since  the  group
velocity  is  equal  to  the  gradient  of  Ω�k�� �,  the  direction  of  the  group  velocity  in  any  direction  is
parallel  to  the  normal  to  the  slowness  surface.   Fig.  4.2  shows  a  slowness  surface  for  the  (001)
plane of Al0.3 �Ga0.7 �As between [100] and [010], for a SAW frequency of 1�GHz.  Notice the pure
modes at Θ � 0�°, 22.5�°, 45�°, 67.5�°, 90�° correspond to the zeros in Fig. 4.1, as expected.

Pure modes can be classified as concave or convex based upon the nature of adjacent points on
the  slowness  surface,  which  characterises  the  two  extremes  of  focusing.   Concave  pure  modes



correspond to directions where energy flow it focused.  As adjacent group velocities point inward
toward the direction associated with the pure mode.  The pure mode at 22.5° in Fig. 4.2 illustrates
this.   Convex  pure  modes  on  the  other  hand  characterise  where  the  energy  flow  of  adjacent
directions diverge, and the [110] direction in Fig. 4.2 is an example of this.
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Figure 4.2:
Slowness curve for the (001) plane of Al0.3 �Ga0.7 �As for f � 1�GHz.  
Pure modes of propagation occur at 0°, 22.5°, 45°, 67.5° and 90°.

No  slowness  surface  has  been  constructed  for  the  leaky  modes  as  energy  is  radiated  into  the
bulk, and the above definition would be invalid.   Instead if the energy propagation parallel to the
sagittal plane was considered, the plot of velocities against direction (Fig. 2.6) indicates that there
would be two pure modes.  One in the [110] direction (the surface wave solution) and another at
around Θ�30�°,  although the slope of the plot  implies  that neither  would exhibit  focusing  effects
comparable to those of the surface wave branch.



4.2 Acoustic Charge Transport

4.2.1 Overview
When  the  piezoelectric  potential  accompanying  a  surface  acoustic  wave  is  coupled  to  a

two � dimensional  electron  gas  (2DEG)  formed  within  a  semiconductor  heterostructure  such  as
Alx �Ga1�x �As � GaAs,  a phenomenon  known as  acoustic  charge  transport  occurs.   The interaction
between  the  potential  and  the  plasma  results  in  an acoustoelectric  current,  of  the  order  of  nano-
amps,  during which the acoustic wave's amplitude and velocity both attenuate.  The acoustoelec-
tric drag effect, whereby the surface wave exerts a pressure on the electron gas was long thought a
valid  explanation25  for  this  current,  although  recent  quantum mechanical  treatment52  has  shown
that this is not a sufficient mechanism to describe the system.

The  experimental  configuration  is  much  alike  the  one  illustrated  in  figure  2.2,  where  a
10 � 20nm layer of GaAs is grown by molecular beam epitaxy onto a Alx �Ga1�x �As substrate and
then covered  by another  layer  of Alx �Ga1�x �As, varying  from 20nm  to 500nm in  thickness.   The
differences  in  these  two  semiconductor's  conduction  and  valence  bands  leads  to  accumulation
layers of both electrons and holes, which are confined to the plane parallel to the interface.   This
forms  the  two-dimensional  electron  gas.   The  lattice  constants  of  these  two  semiconductors  are
almost identical,  and there is an absence of unwanted interface  states.  In some experiments21�22

an  Inx �Ga1�x As/GaAs  heterostructure  is  used.   Sets  of  interdigital  transducers  to  launch  and
measure  surface  acoustic  waves  are  placed  upon  the  surface  of  the  crystal,  and  in  some  cases  a
split gate, positioned perpendicular to the direction of propagation, between the transducers.

4.2.2 Areas of Research

Acoustoelectric Current

There  is  a  large  amount  of  literature,  both  theoretical19, 27,52  and  experimental23, 27  regarding
acoustoelectric current.  By applying a negative bias to the gates upon the surface of the crystal, a
depletion channel forms within the electron gas, and electrons are transported through the channel
in local quantum wells formed by the SAW potential.  The geometry of this system can be seen in
Fig.  4.3.   It  was  found  that  in  this  regime,  the  acoustoelectric  current  I  versus  gate  voltage  dis-
plays a step like behavior.  The values of the current on the plateau are quantised53 :

(4.1)I � n e f

where  e  is  the  electron  charge,  f  is  the  SAW  frequency  and  n  is  the  number  of  electrons
transported through the channel per SAW cycle, as also seen in figure 4.3.  The remarkably high



accuracy of the quantisation, and high frequency of operation (GHz) suggests possible metrologi-
cal application, as discussed in chapter one.  Interestingly,  the quantisation is not observed in the
open  channel  regime,54  as  the  mechanism  that  governs  it  requires  that  the  DC  conductance  for
each  instantaneous  configuration  of  the  SAW-induced  potential  be  zero.55   In  the  open  channel
regime  this  would  require  channel  lengths  much  longer  than  the  SAW  wavelength,  which  is
difficult  to  realise.   As  a  result  the  acoustoelectric  current  displays  giant  oscillations54  as  a
function of gate voltage.

Figure 4.3:

�LEFT��Geometry of Acoustoelectric current experiments; �a� split gates; �b��regions

occupied by 2�DEG; �c� depleted region. �from Flensberg et al55 ��RIGHT� Measured acoustoelectric current vs. gate voltage, for different SAW power

levels. �from Talyanskii et al53 �
Understanding of the nature of the quantisation is the focus of current theoretical research.52,55

A  superposition  of  the  SAW  and  gate  potentials  result  in  the  formation  of  local  quantum  dots
within the channel - and if electrons are captured in these dots they can be transferred through the
channel.   An  increase  in  SAW power  deepens  the  dots  so  that  more  states  become  available  for
electrons to occupy, and new plateaus appear.  The potential barrier formed by the gates can also
be manipulated by changing the gate voltage, which has a similar effect.

As the speed of free electrons is large compared to the velocity of the surface acoustic waves,
the  electrons  are  able  to  follow  the  changing  potential.   This  means  it  can  be  considered  as  an
instantaneous  electrostatic  problem.   To  understanding  the  physics  behind  this  problem,  it  is
important  to  consider  the  screening  effects  and  the  total  contributing  effect  of  potential.   The
screening  length53  in  the  2DEG  ��1�n m�  is  much  smaller  than  the  wavelength  of  the  surface
wave,  Λ�10�Μm,  so  it  is  assumed  that  the  SAW  potential  is  completely  screened  in  the  2DEG
region.    Poisson's  equation has to be solved subject to the boundary conditions - the potential at



the  gates  (Φ � Vg ),  in  the  2DEG  region  �Φ � 0�,  and  the  density  Ρ � Ρo  of  the  fixed  positive
background  charge.   In  addition,  the  effect  of  the  SAW  can  be  included  as  a  weak  periodic
modulation of Ρ : Ρ � Ρo � ∆Ρ�x, t�.  Solving this self-consistently would yield the location of the
edge of the 2DEG (which changes in time) and the potential in the depleted region.

The deviations of the current from its quantised value (eqn 5.3) seen in experimental measure-
ments  (figure  5.8)  is  determined primarily  by the  probability  for  an electron  to tunnel  out  of the
well and  return to the electron gas.   As the distance  between the edge of the 2DEG and the well
increases  when  the SAW propagates  through the  depleted region,  this  probability  is time  depen-
dent.  Further corrections to Eqn. 4.1 include nonadiabatic effects near the entrance to the channel
at  low  temperatures55  and  the  electrostatic  effects  between  electrons  within  the  dot,  known  as
Coulomb blockade.19   Investigations into the effects of magnetic fields upon the quantised current
have also been made.25,26

Acousto-optic Effects

The effects  of  surface  wave  propagation  on  photogenerated  carriers  in semiconductor  hetero-
structures have become the focus of research in recent years,21�22  partly due to the availability of
state-of-the-art  band-gap  engineering  technology.   Particular  heterostructures,  with  desired
optoelectronic  properties,  can  be  developed  to  study  the  dynamics  of  photogenerated  carriers.
Strong interband optical  transitions are characteristic  of semiconductors  with very short radiative
lifetimes,  so  traditionally  the  study  of  optically  excited  carriers  is  experimentally  difficult.
Initially  superlattices,  characterised  by  thin  layers  of  n  and  p  doped  semiconductors  which
extended radiative carrier lifetimes, were grown to study the carriers.

Experimental  research21�22  involving  surface  wave  propagation  in  In0.15 �Ga0.85 �As/GaAs
showed it was possible to extend the radiative lifetime of electron-hole pairs by orders of magni-
tude.   Using  interdigital  transducers,  surface  acoustic  waves  on  the  (001)  plane  are  propagated
along  the  [110]  direction  and  the  light  from  a  pulsed  laser  diode  is  used  for  optical  interband
excitation  above the band gap, and the photoluminescence  from recombination is studied using a
triple grating spectrometer.

The  lateral  piezoelectric  fields  associated  with  the  surface  acoustic  wave  act  to  separate  the
electron � hole  pairs  into  the  respective  adjacent  minima  and  maxima  of  the  conduction  and
valence  bands,  modulated  by  the  surface  wave  potential.   The  effect  of  this  spatial  separation,
which is of the order of half a wavelength of the SAW, is an increase in the radiative lifetime.  To
induce  recombination,  semitransparent  nickel-chromium  electrodes  are  placed  a  distance  away
from the excitation site upon  the surface  of the crystal and  screen the lateral  piezoelectric  fields,
and  photoluminescence  is  detected,  as  seen  in  Fig.  1.1.   The  detected  photoluminescence
increases with increasing acoustic power, until it saturates.  This saturation indicates the complete
possible  occupancy  of  the  wells  due  the  screening  effects  the  dynamic  carriers  have  on  the
potential.



Another alternative  of inducing recombination  is the addition  of a counter-propagating  acous-
tic  wave.   If  both  SAWs  have  the  same  wavelength  and  amplitude,  they  interfere  to  create  a
standing  wave.   The  variation  of  relative  power  of  these  SAWs  allows  the  lifetime  and  thus
location of recombination  to be chosen at will.   When they differ, electron-hole  pairs are trapped
and transported in the direction of the most intense surface wave, however, when they are compara-
ble,  the  standing  wave pattern  causes  an dramatic  increase  of  the overlap  of the  stored  electron-
hole  pair  wavefunctions,  which  induces  recombination.   The  location  of  desired  recombination
can be selected simply by a preset time delay between the surface waves.

The  macroscopic  distances  between  excitation  and  recombination,  as  well  as  the  ability  to
select  where  and  when  recombination  occurs  leads  to  a  whole  myriad  of  possible  acousto-optic
devices.   One  such  example  are  optical  delay  lines,  which  have  a  significant  application31  as
memory  elements  in  optical  computer.   Others  include  beam  steering  and
multiplexing/demultiplexing of optical signals on a single chip.

4.2.3 Suitable parameters for ACT experiments
The shape  of the quantum well  associated  with the surface  acoustic wave varies in width and

height  depending  upon the direction of propagation,  as seen in Fig. 4.4.  For all  known acoustic
charge transport experiments, the SAW propagation has always been in the [110] direction on the
(001) plane, or equivalent orientations. These directions alone have the highest electromechanical
coupling as they are parallel to the polar direction of 4

��
3m cubic crystals, [111].  

At present, no results on  phonon focusing of Alx �Ga1�x �As have been published.  It is possible
that the concave  pure modes may lead to the collective  flow of elastic energy in these directions
that couples favourably to the piezoelectric fields such that they become comparable in amplitude
to those in [110] direction.  

The depth  at  which  the  GaAs  layer  is  grown  is  a  parameter  which  is  different  in  many  ACT
experiments.   In most  cases it lies close  to the surface,  where the potential is usually the largest.
Although,  as  was  seen  in  section  3.2.3  the  size  of  the  vertical  component  of  the  electric  field
varies  quite dramatically  over 0.5�Μm.   The quantum confined Stark effect (QCSE)  occurs when
electric fields are perpendicular to quantum wells, and results in the 'tilting' of the conduction and
valence bands, and the lowering of energy of bound states.  As the wavefunctions are also shifted,
this can result in an increase in tunnelling probability.  Depending on the thickness of the layer in
which the 2DEG lies, the extent of the QCSE would depend on this depth.
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Figure 4.4:
The  shape  of  the  dynamic  quantum  well  associated  with  the  surface  acoustic  wave  at  a
depth of 0.14 wavelengths, for three different directions of propagation (in degrees).

Proposed here  are  two  possible  propagation  directions  and  a  suggested  depth  for  the  electron
gas.   The  first  propagation  direction,  [110],  is  characterised  by  the  highest  electromechanical
coupling and the second, Θ � 22.5�°, a direction of a concave pure mode.  All experiments propa-
gate  surface  waves  in  the  [110]  direction,  although  the  depth  that  is  suggested  here  does  not
coincide to those used in experiment.

Highest Electromechanical  Coupling

As  mentioned  previously,  the  crystallographic  direction  [110]  is  parallel  to  the  [111]  polar
direction.   Displacements  on the surface are purely longitudinal  - so both Ax  and Ay  components
are  parallel  to  [111].   This  explains  why  this  two  component  Raleigh  wave  experiences  the
highest piezoelectric coupling.

It is important to compare values quantitatively to the other directions, along the surface wave
branch.   The boundary  conditions  for  a  shorted  surface  gave  a  velocity  of  2982.36�m s�1 ,  whilst
the free surface velocity was found to be 2983.58m s�1 .  This corresponds to an electromechanical
coupling constant of 1.142, higher than all values plot in Fig. 3.3.  A plot of the SAW potential as
a function of depth is depicted in Fig. 4.5.
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Figure 4.5: The normalised SAW potential for the [110] direction of propagation.

Notice the value of the potential near the surface is greater than all directions show in Fig. 3.6,
and it displays Raleigh wave decay as expected.  The consequence of this is that the potential well
of the SAW will be deeper, and thus more states are available for occupation.  This will increase
the acoustoelectric current.  The chosen depth for this direction is at the bottom of the first well, at
z � �0.14�Λ.  The consequences of this depth will be discussed in the next section.  The dynamic
quantum well associated with the SAW propagating in the 45° direction can be see in Fig. 4.5.

One problem with propagating surface modes in the [110] direction are leaky modes.  Orienta-
tions  of  the  transducers  upon  the  crystal  needs  to  be  exact  as  the  leaky  modes  attenuate  very
quickly as the propagation angle moves away from [110].  The interdigital transducers only excite
surface modes, so the transverse bulk mode, which has a velocity less than the surface wave mode
in this direction, is of no concern.

SAW Focusing

A  pure  mode  of  propagation  occurs  at  22.5°,  which  is  characterised  by  a  locally  concave
slowness surface.   The propagation of surface modes at adjacent angles will contribute to energy
flow  in  the  22.5°direction,  and  if  focusing  effects  are  significant  enough,  the  total  contribution
may produce a potential in this direction comparable to the potential in the [110] direction.

Zero Vertical Piezoelectric Field

As it was established in section 3.2.3, the vertical component of the piezoelectric field changed
dramatically at different depths.  The vertical piezoelectric fields in the [110] direction, which for
a  typical  acoustic  power  are  around  10�kVcm�1 ,  alter  the  potential  well  that  forms  the  2DEG.
This  well  has  a  triangular  form,  which  is  discussed  in  section  4.3.4,  and  depending  upon  the
polarity of the field, the quantum confined Stark effect can lead to a increase in tunnelling events.

The  realisation  of  this  is  a  decrease  in  confined  charge  within  the  2DEG.   In  terms  of  the
quantised  acoustoelectric  current,  this may provide  another explanation  of the slight slope of the
plateaus  seen  experimental  results,  although  the  QCSEs  would  decrease  with  increasing  gate



voltage.   This  could  also  contribute  to further  explanation  of  the  PL  curves  in  the  acousto-optic
experiments.

A zero vertical field would ensure that the QCSE would not be present.  Based on calculations
made  in  3.2.3,  at  the  depths  at  which  the  electron  gas  resides  in  experiments  outlined  in  4.2.2
would have a non zero piezoelectric  field component.   Growing a GaAs layer at 0.14Λ  below the
surface would result in a zero vertical electric field in the [110] direction, and in many directions
for small angles from the [100] direction.

The  study  of  exciton  ionisation  in  low  dimensional  systems22  would  also  benefit  from  zero
vertical  piezoelectric  fields.   Measurements  of  photoluminescence  spectra  would  provide  clearer
results as there would be no vertical  field contributing to the ionisation,  and the binding energies
attributing  to  lateral  fields  could  be  determined  more  precisely.   The  3D  excitons,  which  have
lower binding energies than 2D excitons also need to be taken into consideration, especially as the
lateral and vertical piezoelectric fields change with depth.

4.3.4 Electron Wavefunction
The  experiments  conducted  by  Rocke  et  al21�22  involving  photogenerated  electrons  are

simplier systems to model than the acoustoelectric  current experiments because of the absence of
the  gate  that  forms  the  depletion  channel.   A  simplified  model  of  this  problem  has  two  aspects
that  require  consideration  -  the potential  well  associated with  the surface  acoustic  wave,  and the
potential  within  the  layer  of  semiconductor  where  the  electron  gas  is  formed.   The  former  has
sinusoidal form and the approximation56  for the latter is a triangular well.  Suppose the SAW well
is assumed to vary in the x-direction, and the 2DEG well in the z-direction.  To find the wavefunc-
tions  Ψ(x,z)  and  associated  energies  �  of  a  single  electron  in  these  potentials,  consider  the  time
independent two dimensional Schrödinger equation

(4.2)
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The wavefunctions can be separated such that
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where

(4.4)Ψ�x, z� � X�x��Z�z�



Solution for the SAW potential

The potential in the x-direction is shown in Fig. 4.6, which has the form

(4.5)V�x� � Φd cos� 2 Π x
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Figure 4.6: The quantum well associated with the SAW potential

The Schrödinger equation is

(4.6)
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The  solution  to  this  represents  the  wavefunction  of  an  electron  in  a  periodic  potential.   It  is
useful to redefine this equation into a form know as the Mathieu equation56

(4.7)Ψ ''��s� � �Α � 2�q cos�2�s���Ψ�s� � 0

with energy parameter, Α,  and potential amplitude, q;

(4.8)s �
Π x
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In order to establish solutions of the Mathieu equation, first consider the case of zero potential,
q � 0. The unnormalised standing wave solutions are

Ψ�s� � cos�m s�, sin�m s�
Α � m2 ; m � 1, 2, 3, . . .

When  q ( 0,  the  energy  parameter  and  wave  function  will  both  depend  on  q,  and  these  can
both be expressed by power series:



(4.9)
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∞
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These wave functions are known as the cosine and sine elliptic functions56 , and are well know
in  other  physical  problems  involving  elliptic  shapes  or  periodic  potentials.   The  wave  function
coefficients cn �s� and the energy cooefficients Αn  are found by substituting the expressions (Eqns
4.9)   back into the Matheiu  equation (Eqn 4.7), for  a particular value of m, and equating powers
of  q.   The  resulting  equations  are  solved  by  using  symmetry  conditions  and  successive  integra-
tions.   Hence  Αm �q�  and  Ψm (s,q)  can  be found to  any  desired  accuracy.   In  terms of  the original
variables,  the  energy  and  unnormalised  wavefunction  for  an  electron  in  the  SAW potential  well
are given as
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(4.11)Ψm �x� � cos � m Π x
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Solution for 2DEG potential

For  the  case  of  the  layer  within  the  semiconductor  heterostructure,  using  the  triangular  well
approximation57 , the potential is given as 

V�z� � e F z
where �e F is the corresponding electric field.  The Schrödinger equation looks like

(4.12)
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The triangular  well approximation  is characterised  by an infinite  step on one side of the well.
No electrons can exist beyond this, so the boundary condition is

Ψ�0� � 0
It is useful to express Eqn. 4.12 in a different form
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By defining a new variable, s;

s � z� � �
��

Now Eqn. 4.13 reduces to the familiar Airy-Stokes equation

$2 Ψ�s�

$ s2

� sΨ�s�
The solutions of this equation are known as Airy functions,  Ai(s) and Bi(s).   The second Airy

function Bi(s) is unbounded for s � ∞, so it is rejected.  The boundary condition is

Ai���
��� � 0

Notice that the zeros of the Airy function, which satisfy the boundary condition, correspond to
the eigenvalues  of  Eqn. 4.13  which  are the  rescaled  energies  of  this  system.  All  of the zeros  of
Ai(s) are negative, so defining the nth  zero an � �cn  the allowed energies are given by:

�n � cn � �e F ��2
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�
13

n � 1, 2, 3, . . . .

The roots cn  can be approximated using WKB theory57
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The unnormalised wavefunctions are
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�

Now considering  the  problem in  two  dimensions,  the  total  energy  of  the  ground  state  can  be
calculated, given a potential Φd  and SAW wavelength Λ: 
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The full wavefunction, Ψn,m �x, z�, with normalisation constant Ζn,m , will look like
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This  would  be  a  valid  approximation  of  the  wavefunction  for  an  electron  within  the  two
dimensional  electron  gas  through  which  a  continous  piezoelectric  surface  acoustic  wave  is
travelling.



Chapter Five: Summary

5.1 Conclusions

5.1.1 Surface Acoustic Waves
A  superposition  of  four  plane  waves  formed  the  surface  wave  solution  of  the  piezoelectric

elastic wave equation for the (001) surface of Al0.3 �Ga0.7 �As.  These solutions satisfied the stress-
free boundary conditions associated with a free surface and the requirement that the amplitudes of
displacement vanish at a finite depths.

The  wave  equations  and  boundary  conditions  simplify  in  the  high  symmetry  directions,  and
surface  wave solutions  for  cubic  crystals  in  these  directions  have  been treated  in many  publica-
tions.   However,  there is  limited  literature  on propagation  in arbitrary  directions  in  piezoelectric
cubic  crystals,  and  none  could  be  found  for  Alx �Ga1�x As.   The  propagation  directions  between
[100] and [110], which covers all unique directions for the (001) plane, were studied numerically.
Compared  to  the  non-piezoelectric  surface  wave  solutions,  the  amplitude  corresponding  to  the
additional term when piezoelectric coupling is included is insignificant - at most only contributing
to 2% of the total potential.

The outstanding  feature of these surface modes was the oscillatory decay into the bulk, which
was a direct  consequence of the complex  decay constant.   These solutions are commonly  known
as  Rayleigh  waves.   Solving  for  the  roots  of  the  boundary  condition  matrix  determinant  yielded
the  allowed  velocities  of  the  surface  wave.   These  velocity  results  showed  two  important
features � the  degeneration  of  the  surface  wave  mode  for  Θ � 30�°  into  a  bulk  mode  at  [110]
which  satisfies  the  stress-free  boundary  conditions;  and  the  presence  of leaky  surface  modes  for
Θ � 25�°at  velocities  above  the  lowest  bulk  wave velocity.   These  leaky  modes  are  characterised
by  small  imaginary  components  in  the  wavevector  parallel  to  the  surface,  and  a  positive  imagi-
nary component  of  one  of the  decay  constants.   These  leaky  modes  attenuate  in the  direction  of
propagation and leak energy away from the surface into the bulk of the material.

The  displacements  of  the  surface  acoustic  wave  changed  dramatically  as  the  propagation
direction  changed.   At  [100]  the  wave  is  elliptically  polarised  in  the  sagittal  plane,  and  as  Θ
increases  the  longitudinal  and  vertical  components  become  smaller  and  a  transverse  component
appears.   By  the  time  the  propagation  is  directed  in  the  [110]  direction,  the  longitudinal  and
vertical components have vanished and the surface modes became degenerate with the single bulk
transverse mode.  Alternatively, following the leaky branch to the [110] direction, the longitudinal
and vertical  polarisation increase as the transverse component  begins to decrease and completely



vanishes  for  the surface  wave solution  at [110] whose displacements  are polarised  in the sagittal
plane.

5.1.2 Piezoelectric Potential and Energy Flow
The  piezoelectric  fields  and  potential  play  a  significant  role  in  acoustic  charge  transport

phenomena  and  display  some  interesting  features  as  a  result  of  the  anisotropy  of  Al0.3 �Ga0.7 �As.
From a crystallographic point of view, piezoelectric fields result from strains in the polar direction
of the 4

��
3m point group - the [111] direction.   The consequence of this on the (001) plane is that

longitudinal strain in the [110] direction will result in the highest piezoelectric coupling.
Two  main  aspects  of  the  electric  potential  were  considered:  how  it  varied  with  propagation

direction,  and how it varied with depth.  The plots  of this potential  against propagation direction
indicated that for depths z � �0.25�Λ, the potential was relatively larger over the regions closer to
the [110] direction (ie Θ � 22.5°), and only marginally smaller for depths z � 0.25�Λ for directions
closer  to [100].     The decay into the bulk of the potential provide an explanation  for this, as the
profile  in  the  z � direction  changes  quite  significant  for  different  propagation  directions.   The
highest value for the potential was found for the surface wave mode at [110].

The piezoelectric fields associated with the surface acoustic wave also varied significantly over
the range of propagation directions.  The longitudinal fields were shown to have a behave similar
to  the  potential,  as  expected.   The  potential  has  a  wave-like  dependence,  and  is  invariant  in the
transverse  direction.   The resulting transverse  electric  field is  zero,  for  all  directions of propaga-
tion.   The  vertical  electric  field  displayed  some very  interesting  features  for  a range  of  different
depths  and  directions.   At  angles  close  to the  [100] direction,  for  a  depth  z � 0.14�Λ  there was  a
zero  vertical  field.   The  potential  profile  as  a  function  of  depth  explained  this  -  showing  a  well
structure  close to the surface - and the depth at the centre of this well would give a zero vertical
field.

The focusing effects were investigated using two methods, first the analysis of the direction of
the a power flow vector W and the wavevector k�� , and then a more qualative method - slowness
surfaces.   The  slowness  surface  relied  purely  upon  the  phase  velocity,  whereas  the  power  flow
vector depended on all SAW characteristics.  Both yielded the same results.  Pure mode directions
for  0 � Θ � 90�°  were  found  in  the  high  symmetry  directions  [100],  [110],  [010]  as  well  as  two
concave  pure  modes  at  ~22.5°  and  ~67.5°.   The  group  velocities  of  surface  acoustic  waves
propagating adjacent direction will point in the same direction, and energy will be focussed in this
direction.



5.1.3 Acoustic Charge Transport
All acoustic charge transport experiments propagate surface waves in the [110] direction of the

(001)  plane  (or  equivalent  directions)  on  a  GaAs based  heterostructure.   Free carriers  within the
two dimensional  gas are trapped within the minima of the piezoelectric  potential  associated with
the  travelling  surface  wave.   In  the  presence  of  a  negatively  biased  gate  on  the  surface  of  the
crystal, a depletion layer is formed with the 2DEG, and the charge transport is quantised.  This is
known as the acoustoelectric  current, which is of the order of nanoamps.  The full mechanism of
this  quantised  current  is  not  yet  understood,  and  the  possible  metrological  applications  as  a
current standard has seen research intensify into this aspect of acoustic charge transport.

For experiments investigating the acoustoelectric current, the depth at which the GaAs layer is
grown ranges between 100-500nm.  It would be worth investigating the nature of the current on a
heterostructure  with a 2DEG at a depth of z � �0.14�Λ (~140nm for a SAW wavelength of 1Μm).
In  this  case  there is  an absence  of  vertical  piezoelectric  fields,  and  as  a  result  an absence  of  the
quantum  confined  Stark  effect.   This  could  provide  more  accurate  measurements  of  the  current,
and the effect of vertical piezoelectric fields could be determined.

If focusing effects are significant, propagation in the Θ � 22.5�° direction could yield a piezoelec
tric  potential  comparable  or  even  greater  than  that  in [110].   The greater  the  potential  the  larger
the occupancy of the well and the greater  the current.   Although the [110] direction provides the
highest  electromechanical  coupling,  the  presence  of  highly  attenuated  leaky  modes  on  each
direction  immediately  adjacent  of  this  direction  requires  precise  engineering  of  the  interdigital
transducers upon the heterostructure.

5.2 Future Research
The next  fundamental  step in the surface  acoustic  wave problem is to consider the dynamical

response  of  the  system  by  solving  the  wave  equation  subject  to  a  driving  term.   There  are  a
number  of  mathematical  techniques  that  can  be  used,  although  the  obvious  choice  is  a  Green's
functions  method.   Once the nine (or  in the  piezoelectric  case,  16)  Green's  tensor  elements  have
been  found,  the  response  of  the  system  to  an  arbitrary  driving  force  can  be  determined.   Real
values can then be determined for the amplitudes, piezoelectric fields and potentials for a specific
acoustic power.

Studies can then be turned to the phonon focusing aspect on Al0.3 �Ga0.7 �As, and a quantitative
analysis  can  be  made.   Focusing  patterns  can  be  developed,  and  the  strength  of  focusing  in
particular directions can be determined.  A consequence might be that channels would be formed
by the SAWs and the gates used in previous experiments may not be necessary.



There  is  a  myriad  of  acoustic  charge  transport  related  research  to  consider.   One  interesting
application is the effect of a point source of acoustic waves on a surrounding electron gas.  In this
system the effects of phonon focusing will be of prime consideration.

Exciton  ionisation  in  the  well  still  has  yet  to  be  fully  understood.   The  transition  process
between the bound states of the moving well and the ionised electron-hole pairs requires consider-
ation, and the experiment described previously would be an excellent tool to study these excitons.
As the lateral and vertical piezoelectric fields vary with direction, by optically exciting carriers at
a  central  location  on  the  crystal  and  driving  the  point  source,  deliberate  screening  at  radial
locations on the sample will result in a detected photoluminescence due to recombination.  Taking
into account  the propagation  directions for each  of these spectra, binding energies  of 2D and 3D
excitons can be calculated, and further insight into the mechanism of the transition can be made.
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